Metamath Proof Explorer


Theorem abssneg

Description: Surreal absolute value of the negative. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion abssneg
|- ( A e. No -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) )

Proof

Step Hyp Ref Expression
1 negnegs
 |-  ( A e. No -> ( -us ` ( -us ` A ) ) = A )
2 1 adantr
 |-  ( ( A e. No /\ 0s <_s A ) -> ( -us ` ( -us ` A ) ) = A )
3 negscl
 |-  ( A e. No -> ( -us ` A ) e. No )
4 0sno
 |-  0s e. No
5 4 a1i
 |-  ( A e. No -> 0s e. No )
6 id
 |-  ( A e. No -> A e. No )
7 5 6 slenegd
 |-  ( A e. No -> ( 0s <_s A <-> ( -us ` A ) <_s ( -us ` 0s ) ) )
8 negs0s
 |-  ( -us ` 0s ) = 0s
9 8 breq2i
 |-  ( ( -us ` A ) <_s ( -us ` 0s ) <-> ( -us ` A ) <_s 0s )
10 7 9 bitrdi
 |-  ( A e. No -> ( 0s <_s A <-> ( -us ` A ) <_s 0s ) )
11 10 biimpa
 |-  ( ( A e. No /\ 0s <_s A ) -> ( -us ` A ) <_s 0s )
12 abssnid
 |-  ( ( ( -us ` A ) e. No /\ ( -us ` A ) <_s 0s ) -> ( abs_s ` ( -us ` A ) ) = ( -us ` ( -us ` A ) ) )
13 3 11 12 syl2an2r
 |-  ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` ( -us ` A ) ) = ( -us ` ( -us ` A ) ) )
14 abssid
 |-  ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` A ) = A )
15 2 13 14 3eqtr4d
 |-  ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) )
16 6 5 slenegd
 |-  ( A e. No -> ( A <_s 0s <-> ( -us ` 0s ) <_s ( -us ` A ) ) )
17 8 breq1i
 |-  ( ( -us ` 0s ) <_s ( -us ` A ) <-> 0s <_s ( -us ` A ) )
18 16 17 bitrdi
 |-  ( A e. No -> ( A <_s 0s <-> 0s <_s ( -us ` A ) ) )
19 18 biimpa
 |-  ( ( A e. No /\ A <_s 0s ) -> 0s <_s ( -us ` A ) )
20 abssid
 |-  ( ( ( -us ` A ) e. No /\ 0s <_s ( -us ` A ) ) -> ( abs_s ` ( -us ` A ) ) = ( -us ` A ) )
21 3 19 20 syl2an2r
 |-  ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` ( -us ` A ) ) = ( -us ` A ) )
22 abssnid
 |-  ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` A ) = ( -us ` A ) )
23 21 22 eqtr4d
 |-  ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) )
24 sletric
 |-  ( ( 0s e. No /\ A e. No ) -> ( 0s <_s A \/ A <_s 0s ) )
25 4 24 mpan
 |-  ( A e. No -> ( 0s <_s A \/ A <_s 0s ) )
26 15 23 25 mpjaodan
 |-  ( A e. No -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) )