| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negnegs |  |-  ( A e. No -> ( -us ` ( -us ` A ) ) = A ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. No /\ 0s <_s A ) -> ( -us ` ( -us ` A ) ) = A ) | 
						
							| 3 |  | negscl |  |-  ( A e. No -> ( -us ` A ) e. No ) | 
						
							| 4 |  | 0sno |  |-  0s e. No | 
						
							| 5 | 4 | a1i |  |-  ( A e. No -> 0s e. No ) | 
						
							| 6 |  | id |  |-  ( A e. No -> A e. No ) | 
						
							| 7 | 5 6 | slenegd |  |-  ( A e. No -> ( 0s <_s A <-> ( -us ` A ) <_s ( -us ` 0s ) ) ) | 
						
							| 8 |  | negs0s |  |-  ( -us ` 0s ) = 0s | 
						
							| 9 | 8 | breq2i |  |-  ( ( -us ` A ) <_s ( -us ` 0s ) <-> ( -us ` A ) <_s 0s ) | 
						
							| 10 | 7 9 | bitrdi |  |-  ( A e. No -> ( 0s <_s A <-> ( -us ` A ) <_s 0s ) ) | 
						
							| 11 | 10 | biimpa |  |-  ( ( A e. No /\ 0s <_s A ) -> ( -us ` A ) <_s 0s ) | 
						
							| 12 |  | abssnid |  |-  ( ( ( -us ` A ) e. No /\ ( -us ` A ) <_s 0s ) -> ( abs_s ` ( -us ` A ) ) = ( -us ` ( -us ` A ) ) ) | 
						
							| 13 | 3 11 12 | syl2an2r |  |-  ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` ( -us ` A ) ) = ( -us ` ( -us ` A ) ) ) | 
						
							| 14 |  | abssid |  |-  ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` A ) = A ) | 
						
							| 15 | 2 13 14 | 3eqtr4d |  |-  ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) ) | 
						
							| 16 | 6 5 | slenegd |  |-  ( A e. No -> ( A <_s 0s <-> ( -us ` 0s ) <_s ( -us ` A ) ) ) | 
						
							| 17 | 8 | breq1i |  |-  ( ( -us ` 0s ) <_s ( -us ` A ) <-> 0s <_s ( -us ` A ) ) | 
						
							| 18 | 16 17 | bitrdi |  |-  ( A e. No -> ( A <_s 0s <-> 0s <_s ( -us ` A ) ) ) | 
						
							| 19 | 18 | biimpa |  |-  ( ( A e. No /\ A <_s 0s ) -> 0s <_s ( -us ` A ) ) | 
						
							| 20 |  | abssid |  |-  ( ( ( -us ` A ) e. No /\ 0s <_s ( -us ` A ) ) -> ( abs_s ` ( -us ` A ) ) = ( -us ` A ) ) | 
						
							| 21 | 3 19 20 | syl2an2r |  |-  ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` ( -us ` A ) ) = ( -us ` A ) ) | 
						
							| 22 |  | abssnid |  |-  ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` A ) = ( -us ` A ) ) | 
						
							| 23 | 21 22 | eqtr4d |  |-  ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) ) | 
						
							| 24 |  | sletric |  |-  ( ( 0s e. No /\ A e. No ) -> ( 0s <_s A \/ A <_s 0s ) ) | 
						
							| 25 | 4 24 | mpan |  |-  ( A e. No -> ( 0s <_s A \/ A <_s 0s ) ) | 
						
							| 26 | 15 23 25 | mpjaodan |  |-  ( A e. No -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) ) |