Step |
Hyp |
Ref |
Expression |
1 |
|
negnegs |
|- ( A e. No -> ( -us ` ( -us ` A ) ) = A ) |
2 |
1
|
adantr |
|- ( ( A e. No /\ 0s <_s A ) -> ( -us ` ( -us ` A ) ) = A ) |
3 |
|
negscl |
|- ( A e. No -> ( -us ` A ) e. No ) |
4 |
|
0sno |
|- 0s e. No |
5 |
4
|
a1i |
|- ( A e. No -> 0s e. No ) |
6 |
|
id |
|- ( A e. No -> A e. No ) |
7 |
5 6
|
slenegd |
|- ( A e. No -> ( 0s <_s A <-> ( -us ` A ) <_s ( -us ` 0s ) ) ) |
8 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
9 |
8
|
breq2i |
|- ( ( -us ` A ) <_s ( -us ` 0s ) <-> ( -us ` A ) <_s 0s ) |
10 |
7 9
|
bitrdi |
|- ( A e. No -> ( 0s <_s A <-> ( -us ` A ) <_s 0s ) ) |
11 |
10
|
biimpa |
|- ( ( A e. No /\ 0s <_s A ) -> ( -us ` A ) <_s 0s ) |
12 |
|
abssnid |
|- ( ( ( -us ` A ) e. No /\ ( -us ` A ) <_s 0s ) -> ( abs_s ` ( -us ` A ) ) = ( -us ` ( -us ` A ) ) ) |
13 |
3 11 12
|
syl2an2r |
|- ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` ( -us ` A ) ) = ( -us ` ( -us ` A ) ) ) |
14 |
|
abssid |
|- ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` A ) = A ) |
15 |
2 13 14
|
3eqtr4d |
|- ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) ) |
16 |
6 5
|
slenegd |
|- ( A e. No -> ( A <_s 0s <-> ( -us ` 0s ) <_s ( -us ` A ) ) ) |
17 |
8
|
breq1i |
|- ( ( -us ` 0s ) <_s ( -us ` A ) <-> 0s <_s ( -us ` A ) ) |
18 |
16 17
|
bitrdi |
|- ( A e. No -> ( A <_s 0s <-> 0s <_s ( -us ` A ) ) ) |
19 |
18
|
biimpa |
|- ( ( A e. No /\ A <_s 0s ) -> 0s <_s ( -us ` A ) ) |
20 |
|
abssid |
|- ( ( ( -us ` A ) e. No /\ 0s <_s ( -us ` A ) ) -> ( abs_s ` ( -us ` A ) ) = ( -us ` A ) ) |
21 |
3 19 20
|
syl2an2r |
|- ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` ( -us ` A ) ) = ( -us ` A ) ) |
22 |
|
abssnid |
|- ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` A ) = ( -us ` A ) ) |
23 |
21 22
|
eqtr4d |
|- ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) ) |
24 |
|
sletric |
|- ( ( 0s e. No /\ A e. No ) -> ( 0s <_s A \/ A <_s 0s ) ) |
25 |
4 24
|
mpan |
|- ( A e. No -> ( 0s <_s A \/ A <_s 0s ) ) |
26 |
15 23 25
|
mpjaodan |
|- ( A e. No -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) ) |