Step |
Hyp |
Ref |
Expression |
1 |
|
slerflex |
|- ( A e. No -> A <_s A ) |
2 |
1
|
adantr |
|- ( ( A e. No /\ 0s <_s A ) -> A <_s A ) |
3 |
|
abssid |
|- ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` A ) = A ) |
4 |
2 3
|
breqtrrd |
|- ( ( A e. No /\ 0s <_s A ) -> A <_s ( abs_s ` A ) ) |
5 |
|
simpl |
|- ( ( A e. No /\ A <_s 0s ) -> A e. No ) |
6 |
|
0sno |
|- 0s e. No |
7 |
6
|
a1i |
|- ( ( A e. No /\ A <_s 0s ) -> 0s e. No ) |
8 |
|
negscl |
|- ( A e. No -> ( -us ` A ) e. No ) |
9 |
8
|
adantr |
|- ( ( A e. No /\ A <_s 0s ) -> ( -us ` A ) e. No ) |
10 |
|
simpr |
|- ( ( A e. No /\ A <_s 0s ) -> A <_s 0s ) |
11 |
|
negs0s |
|- ( -us ` 0s ) = 0s |
12 |
5 7
|
slenegd |
|- ( ( A e. No /\ A <_s 0s ) -> ( A <_s 0s <-> ( -us ` 0s ) <_s ( -us ` A ) ) ) |
13 |
10 12
|
mpbid |
|- ( ( A e. No /\ A <_s 0s ) -> ( -us ` 0s ) <_s ( -us ` A ) ) |
14 |
11 13
|
eqbrtrrid |
|- ( ( A e. No /\ A <_s 0s ) -> 0s <_s ( -us ` A ) ) |
15 |
5 7 9 10 14
|
sletrd |
|- ( ( A e. No /\ A <_s 0s ) -> A <_s ( -us ` A ) ) |
16 |
|
abssnid |
|- ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` A ) = ( -us ` A ) ) |
17 |
15 16
|
breqtrrd |
|- ( ( A e. No /\ A <_s 0s ) -> A <_s ( abs_s ` A ) ) |
18 |
|
sletric |
|- ( ( 0s e. No /\ A e. No ) -> ( 0s <_s A \/ A <_s 0s ) ) |
19 |
6 18
|
mpan |
|- ( A e. No -> ( 0s <_s A \/ A <_s 0s ) ) |
20 |
4 17 19
|
mpjaodan |
|- ( A e. No -> A <_s ( abs_s ` A ) ) |