| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slerflex |  |-  ( A e. No -> A <_s A ) | 
						
							| 2 | 1 | adantr |  |-  ( ( A e. No /\ 0s <_s A ) -> A <_s A ) | 
						
							| 3 |  | abssid |  |-  ( ( A e. No /\ 0s <_s A ) -> ( abs_s ` A ) = A ) | 
						
							| 4 | 2 3 | breqtrrd |  |-  ( ( A e. No /\ 0s <_s A ) -> A <_s ( abs_s ` A ) ) | 
						
							| 5 |  | simpl |  |-  ( ( A e. No /\ A <_s 0s ) -> A e. No ) | 
						
							| 6 |  | 0sno |  |-  0s e. No | 
						
							| 7 | 6 | a1i |  |-  ( ( A e. No /\ A <_s 0s ) -> 0s e. No ) | 
						
							| 8 |  | negscl |  |-  ( A e. No -> ( -us ` A ) e. No ) | 
						
							| 9 | 8 | adantr |  |-  ( ( A e. No /\ A <_s 0s ) -> ( -us ` A ) e. No ) | 
						
							| 10 |  | simpr |  |-  ( ( A e. No /\ A <_s 0s ) -> A <_s 0s ) | 
						
							| 11 |  | negs0s |  |-  ( -us ` 0s ) = 0s | 
						
							| 12 | 5 7 | slenegd |  |-  ( ( A e. No /\ A <_s 0s ) -> ( A <_s 0s <-> ( -us ` 0s ) <_s ( -us ` A ) ) ) | 
						
							| 13 | 10 12 | mpbid |  |-  ( ( A e. No /\ A <_s 0s ) -> ( -us ` 0s ) <_s ( -us ` A ) ) | 
						
							| 14 | 11 13 | eqbrtrrid |  |-  ( ( A e. No /\ A <_s 0s ) -> 0s <_s ( -us ` A ) ) | 
						
							| 15 | 5 7 9 10 14 | sletrd |  |-  ( ( A e. No /\ A <_s 0s ) -> A <_s ( -us ` A ) ) | 
						
							| 16 |  | abssnid |  |-  ( ( A e. No /\ A <_s 0s ) -> ( abs_s ` A ) = ( -us ` A ) ) | 
						
							| 17 | 15 16 | breqtrrd |  |-  ( ( A e. No /\ A <_s 0s ) -> A <_s ( abs_s ` A ) ) | 
						
							| 18 |  | sletric |  |-  ( ( 0s e. No /\ A e. No ) -> ( 0s <_s A \/ A <_s 0s ) ) | 
						
							| 19 | 6 18 | mpan |  |-  ( A e. No -> ( 0s <_s A \/ A <_s 0s ) ) | 
						
							| 20 | 4 17 19 | mpjaodan |  |-  ( A e. No -> A <_s ( abs_s ` A ) ) |