Metamath Proof Explorer


Theorem absslt

Description: Surreal absolute value and less-than relation. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion absslt
|- ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A )  ( ( -us ` B ) 

Proof

Step Hyp Ref Expression
1 negscl
 |-  ( A e. No -> ( -us ` A ) e. No )
2 1 ad2antrr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( -us ` A ) e. No )
3 absscl
 |-  ( ( -us ` A ) e. No -> ( abs_s ` ( -us ` A ) ) e. No )
4 1 3 syl
 |-  ( A e. No -> ( abs_s ` ( -us ` A ) ) e. No )
5 4 ad2antrr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( abs_s ` ( -us ` A ) ) e. No )
6 simplr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  B e. No )
7 sleabs
 |-  ( ( -us ` A ) e. No -> ( -us ` A ) <_s ( abs_s ` ( -us ` A ) ) )
8 1 7 syl
 |-  ( A e. No -> ( -us ` A ) <_s ( abs_s ` ( -us ` A ) ) )
9 8 ad2antrr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( -us ` A ) <_s ( abs_s ` ( -us ` A ) ) )
10 abssneg
 |-  ( A e. No -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) )
11 10 adantr
 |-  ( ( A e. No /\ B e. No ) -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) )
12 11 breq1d
 |-  ( ( A e. No /\ B e. No ) -> ( ( abs_s ` ( -us ` A ) )  ( abs_s ` A ) 
13 12 biimpar
 |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( abs_s ` ( -us ` A ) ) 
14 2 5 6 9 13 slelttrd
 |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( -us ` A ) 
15 simpll
 |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  A e. No )
16 absscl
 |-  ( A e. No -> ( abs_s ` A ) e. No )
17 16 ad2antrr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( abs_s ` A ) e. No )
18 sleabs
 |-  ( A e. No -> A <_s ( abs_s ` A ) )
19 18 ad2antrr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  A <_s ( abs_s ` A ) )
20 simpr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( abs_s ` A ) 
21 15 17 6 19 20 slelttrd
 |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  A 
22 14 21 jca
 |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( ( -us ` A ) 
23 22 ex
 |-  ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A )  ( ( -us ` A ) 
24 abssor
 |-  ( A e. No -> ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) )
25 24 adantr
 |-  ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) )
26 breq1
 |-  ( ( abs_s ` A ) = A -> ( ( abs_s ` A )  A 
27 26 biimprd
 |-  ( ( abs_s ` A ) = A -> ( A  ( abs_s ` A ) 
28 breq1
 |-  ( ( abs_s ` A ) = ( -us ` A ) -> ( ( abs_s ` A )  ( -us ` A ) 
29 28 biimprd
 |-  ( ( abs_s ` A ) = ( -us ` A ) -> ( ( -us ` A )  ( abs_s ` A ) 
30 27 29 jaoa
 |-  ( ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) -> ( ( A  ( abs_s ` A ) 
31 30 ancomsd
 |-  ( ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) -> ( ( ( -us ` A )  ( abs_s ` A ) 
32 25 31 syl
 |-  ( ( A e. No /\ B e. No ) -> ( ( ( -us ` A )  ( abs_s ` A ) 
33 23 32 impbid
 |-  ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A )  ( ( -us ` A ) 
34 1 adantr
 |-  ( ( A e. No /\ B e. No ) -> ( -us ` A ) e. No )
35 simpr
 |-  ( ( A e. No /\ B e. No ) -> B e. No )
36 34 35 sltnegd
 |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` A )  ( -us ` B ) 
37 negnegs
 |-  ( A e. No -> ( -us ` ( -us ` A ) ) = A )
38 37 adantr
 |-  ( ( A e. No /\ B e. No ) -> ( -us ` ( -us ` A ) ) = A )
39 38 breq2d
 |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` B )  ( -us ` B ) 
40 36 39 bitrd
 |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` A )  ( -us ` B ) 
41 40 anbi1d
 |-  ( ( A e. No /\ B e. No ) -> ( ( ( -us ` A )  ( ( -us ` B ) 
42 33 41 bitrd
 |-  ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A )  ( ( -us ` B )