| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negscl |
|- ( A e. No -> ( -us ` A ) e. No ) |
| 2 |
1
|
ad2antrr |
|- ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A ) ( -us ` A ) e. No ) |
| 3 |
|
absscl |
|- ( ( -us ` A ) e. No -> ( abs_s ` ( -us ` A ) ) e. No ) |
| 4 |
1 3
|
syl |
|- ( A e. No -> ( abs_s ` ( -us ` A ) ) e. No ) |
| 5 |
4
|
ad2antrr |
|- ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A ) ( abs_s ` ( -us ` A ) ) e. No ) |
| 6 |
|
simplr |
|- ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A ) B e. No ) |
| 7 |
|
sleabs |
|- ( ( -us ` A ) e. No -> ( -us ` A ) <_s ( abs_s ` ( -us ` A ) ) ) |
| 8 |
1 7
|
syl |
|- ( A e. No -> ( -us ` A ) <_s ( abs_s ` ( -us ` A ) ) ) |
| 9 |
8
|
ad2antrr |
|- ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A ) ( -us ` A ) <_s ( abs_s ` ( -us ` A ) ) ) |
| 10 |
|
abssneg |
|- ( A e. No -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) ) |
| 11 |
10
|
adantr |
|- ( ( A e. No /\ B e. No ) -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) ) |
| 12 |
11
|
breq1d |
|- ( ( A e. No /\ B e. No ) -> ( ( abs_s ` ( -us ` A ) ) ( abs_s ` A ) |
| 13 |
12
|
biimpar |
|- ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A ) ( abs_s ` ( -us ` A ) ) |
| 14 |
2 5 6 9 13
|
slelttrd |
|- ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A ) ( -us ` A ) |
| 15 |
|
simpll |
|- ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A ) A e. No ) |
| 16 |
|
absscl |
|- ( A e. No -> ( abs_s ` A ) e. No ) |
| 17 |
16
|
ad2antrr |
|- ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A ) ( abs_s ` A ) e. No ) |
| 18 |
|
sleabs |
|- ( A e. No -> A <_s ( abs_s ` A ) ) |
| 19 |
18
|
ad2antrr |
|- ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A ) A <_s ( abs_s ` A ) ) |
| 20 |
|
simpr |
|- ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A ) ( abs_s ` A ) |
| 21 |
15 17 6 19 20
|
slelttrd |
|- ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A ) A |
| 22 |
14 21
|
jca |
|- ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A ) ( ( -us ` A ) |
| 23 |
22
|
ex |
|- ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A ) ( ( -us ` A ) |
| 24 |
|
abssor |
|- ( A e. No -> ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) ) |
| 25 |
24
|
adantr |
|- ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) ) |
| 26 |
|
breq1 |
|- ( ( abs_s ` A ) = A -> ( ( abs_s ` A ) A |
| 27 |
26
|
biimprd |
|- ( ( abs_s ` A ) = A -> ( A ( abs_s ` A ) |
| 28 |
|
breq1 |
|- ( ( abs_s ` A ) = ( -us ` A ) -> ( ( abs_s ` A ) ( -us ` A ) |
| 29 |
28
|
biimprd |
|- ( ( abs_s ` A ) = ( -us ` A ) -> ( ( -us ` A ) ( abs_s ` A ) |
| 30 |
27 29
|
jaoa |
|- ( ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) -> ( ( A ( abs_s ` A ) |
| 31 |
30
|
ancomsd |
|- ( ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) -> ( ( ( -us ` A ) ( abs_s ` A ) |
| 32 |
25 31
|
syl |
|- ( ( A e. No /\ B e. No ) -> ( ( ( -us ` A ) ( abs_s ` A ) |
| 33 |
23 32
|
impbid |
|- ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A ) ( ( -us ` A ) |
| 34 |
1
|
adantr |
|- ( ( A e. No /\ B e. No ) -> ( -us ` A ) e. No ) |
| 35 |
|
simpr |
|- ( ( A e. No /\ B e. No ) -> B e. No ) |
| 36 |
34 35
|
sltnegd |
|- ( ( A e. No /\ B e. No ) -> ( ( -us ` A ) ( -us ` B ) |
| 37 |
|
negnegs |
|- ( A e. No -> ( -us ` ( -us ` A ) ) = A ) |
| 38 |
37
|
adantr |
|- ( ( A e. No /\ B e. No ) -> ( -us ` ( -us ` A ) ) = A ) |
| 39 |
38
|
breq2d |
|- ( ( A e. No /\ B e. No ) -> ( ( -us ` B ) ( -us ` B ) |
| 40 |
36 39
|
bitrd |
|- ( ( A e. No /\ B e. No ) -> ( ( -us ` A ) ( -us ` B ) |
| 41 |
40
|
anbi1d |
|- ( ( A e. No /\ B e. No ) -> ( ( ( -us ` A ) ( ( -us ` B ) |
| 42 |
33 41
|
bitrd |
|- ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A ) ( ( -us ` B ) |