| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negscl |  |-  ( A e. No -> ( -us ` A ) e. No ) | 
						
							| 2 | 1 | ad2antrr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( -us ` A ) e. No ) | 
						
							| 3 |  | absscl |  |-  ( ( -us ` A ) e. No -> ( abs_s ` ( -us ` A ) ) e. No ) | 
						
							| 4 | 1 3 | syl |  |-  ( A e. No -> ( abs_s ` ( -us ` A ) ) e. No ) | 
						
							| 5 | 4 | ad2antrr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( abs_s ` ( -us ` A ) ) e. No ) | 
						
							| 6 |  | simplr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  B e. No ) | 
						
							| 7 |  | sleabs |  |-  ( ( -us ` A ) e. No -> ( -us ` A ) <_s ( abs_s ` ( -us ` A ) ) ) | 
						
							| 8 | 1 7 | syl |  |-  ( A e. No -> ( -us ` A ) <_s ( abs_s ` ( -us ` A ) ) ) | 
						
							| 9 | 8 | ad2antrr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( -us ` A ) <_s ( abs_s ` ( -us ` A ) ) ) | 
						
							| 10 |  | abssneg |  |-  ( A e. No -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( A e. No /\ B e. No ) -> ( abs_s ` ( -us ` A ) ) = ( abs_s ` A ) ) | 
						
							| 12 | 11 | breq1d |  |-  ( ( A e. No /\ B e. No ) -> ( ( abs_s ` ( -us ` A ) )  ( abs_s ` A )  | 
						
							| 13 | 12 | biimpar |  |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( abs_s ` ( -us ` A ) )  | 
						
							| 14 | 2 5 6 9 13 | slelttrd |  |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( -us ` A )  | 
						
							| 15 |  | simpll |  |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  A e. No ) | 
						
							| 16 |  | absscl |  |-  ( A e. No -> ( abs_s ` A ) e. No ) | 
						
							| 17 | 16 | ad2antrr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( abs_s ` A ) e. No ) | 
						
							| 18 |  | sleabs |  |-  ( A e. No -> A <_s ( abs_s ` A ) ) | 
						
							| 19 | 18 | ad2antrr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  A <_s ( abs_s ` A ) ) | 
						
							| 20 |  | simpr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( abs_s ` A )  | 
						
							| 21 | 15 17 6 19 20 | slelttrd |  |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  A  | 
						
							| 22 | 14 21 | jca |  |-  ( ( ( A e. No /\ B e. No ) /\ ( abs_s ` A )  ( ( -us ` A )  | 
						
							| 23 | 22 | ex |  |-  ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A )  ( ( -us ` A )  | 
						
							| 24 |  | abssor |  |-  ( A e. No -> ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) ) | 
						
							| 25 | 24 | adantr |  |-  ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) ) | 
						
							| 26 |  | breq1 |  |-  ( ( abs_s ` A ) = A -> ( ( abs_s ` A )  A  | 
						
							| 27 | 26 | biimprd |  |-  ( ( abs_s ` A ) = A -> ( A  ( abs_s ` A )  | 
						
							| 28 |  | breq1 |  |-  ( ( abs_s ` A ) = ( -us ` A ) -> ( ( abs_s ` A )  ( -us ` A )  | 
						
							| 29 | 28 | biimprd |  |-  ( ( abs_s ` A ) = ( -us ` A ) -> ( ( -us ` A )  ( abs_s ` A )  | 
						
							| 30 | 27 29 | jaoa |  |-  ( ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) -> ( ( A  ( abs_s ` A )  | 
						
							| 31 | 30 | ancomsd |  |-  ( ( ( abs_s ` A ) = A \/ ( abs_s ` A ) = ( -us ` A ) ) -> ( ( ( -us ` A )  ( abs_s ` A )  | 
						
							| 32 | 25 31 | syl |  |-  ( ( A e. No /\ B e. No ) -> ( ( ( -us ` A )  ( abs_s ` A )  | 
						
							| 33 | 23 32 | impbid |  |-  ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A )  ( ( -us ` A )  | 
						
							| 34 | 1 | adantr |  |-  ( ( A e. No /\ B e. No ) -> ( -us ` A ) e. No ) | 
						
							| 35 |  | simpr |  |-  ( ( A e. No /\ B e. No ) -> B e. No ) | 
						
							| 36 | 34 35 | sltnegd |  |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` A )  ( -us ` B )  | 
						
							| 37 |  | negnegs |  |-  ( A e. No -> ( -us ` ( -us ` A ) ) = A ) | 
						
							| 38 | 37 | adantr |  |-  ( ( A e. No /\ B e. No ) -> ( -us ` ( -us ` A ) ) = A ) | 
						
							| 39 | 38 | breq2d |  |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` B )  ( -us ` B )  | 
						
							| 40 | 36 39 | bitrd |  |-  ( ( A e. No /\ B e. No ) -> ( ( -us ` A )  ( -us ` B )  | 
						
							| 41 | 40 | anbi1d |  |-  ( ( A e. No /\ B e. No ) -> ( ( ( -us ` A )  ( ( -us ` B )  | 
						
							| 42 | 33 41 | bitrd |  |-  ( ( A e. No /\ B e. No ) -> ( ( abs_s ` A )  ( ( -us ` B )  |