| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negscl |
|
| 2 |
1
|
ad2antrr |
|
| 3 |
|
absscl |
|
| 4 |
1 3
|
syl |
|
| 5 |
4
|
ad2antrr |
|
| 6 |
|
simplr |
|
| 7 |
|
sleabs |
|
| 8 |
1 7
|
syl |
|
| 9 |
8
|
ad2antrr |
|
| 10 |
|
abssneg |
|
| 11 |
10
|
adantr |
|
| 12 |
11
|
breq1d |
|
| 13 |
12
|
biimpar |
|
| 14 |
2 5 6 9 13
|
slelttrd |
|
| 15 |
|
simpll |
|
| 16 |
|
absscl |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
|
sleabs |
|
| 19 |
18
|
ad2antrr |
|
| 20 |
|
simpr |
|
| 21 |
15 17 6 19 20
|
slelttrd |
|
| 22 |
14 21
|
jca |
|
| 23 |
22
|
ex |
|
| 24 |
|
abssor |
|
| 25 |
24
|
adantr |
|
| 26 |
|
breq1 |
|
| 27 |
26
|
biimprd |
|
| 28 |
|
breq1 |
|
| 29 |
28
|
biimprd |
|
| 30 |
27 29
|
jaoa |
|
| 31 |
30
|
ancomsd |
|
| 32 |
25 31
|
syl |
|
| 33 |
23 32
|
impbid |
|
| 34 |
1
|
adantr |
|
| 35 |
|
simpr |
|
| 36 |
34 35
|
sltnegd |
|
| 37 |
|
negnegs |
|
| 38 |
37
|
adantr |
|
| 39 |
38
|
breq2d |
|
| 40 |
36 39
|
bitrd |
|
| 41 |
40
|
anbi1d |
|
| 42 |
33 41
|
bitrd |
|