Step |
Hyp |
Ref |
Expression |
1 |
|
negscl |
|
2 |
1
|
ad2antrr |
|
3 |
|
absscl |
|
4 |
1 3
|
syl |
|
5 |
4
|
ad2antrr |
|
6 |
|
simplr |
|
7 |
|
sleabs |
|
8 |
1 7
|
syl |
|
9 |
8
|
ad2antrr |
|
10 |
|
abssneg |
|
11 |
10
|
adantr |
|
12 |
11
|
breq1d |
|
13 |
12
|
biimpar |
|
14 |
2 5 6 9 13
|
slelttrd |
|
15 |
|
simpll |
|
16 |
|
absscl |
|
17 |
16
|
ad2antrr |
|
18 |
|
sleabs |
|
19 |
18
|
ad2antrr |
|
20 |
|
simpr |
|
21 |
15 17 6 19 20
|
slelttrd |
|
22 |
14 21
|
jca |
|
23 |
22
|
ex |
|
24 |
|
abssor |
|
25 |
24
|
adantr |
|
26 |
|
breq1 |
|
27 |
26
|
biimprd |
|
28 |
|
breq1 |
|
29 |
28
|
biimprd |
|
30 |
27 29
|
jaoa |
|
31 |
30
|
ancomsd |
|
32 |
25 31
|
syl |
|
33 |
23 32
|
impbid |
|
34 |
1
|
adantr |
|
35 |
|
simpr |
|
36 |
34 35
|
sltnegd |
|
37 |
|
negnegs |
|
38 |
37
|
adantr |
|
39 |
38
|
breq2d |
|
40 |
36 39
|
bitrd |
|
41 |
40
|
anbi1d |
|
42 |
33 41
|
bitrd |
|