Metamath Proof Explorer


Theorem absslt

Description: Surreal absolute value and less-than relation. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion absslt A No B No abs s A < s B + s B < s A A < s B

Proof

Step Hyp Ref Expression
1 negscl A No + s A No
2 1 ad2antrr A No B No abs s A < s B + s A No
3 absscl + s A No abs s + s A No
4 1 3 syl A No abs s + s A No
5 4 ad2antrr A No B No abs s A < s B abs s + s A No
6 simplr A No B No abs s A < s B B No
7 sleabs + s A No + s A s abs s + s A
8 1 7 syl A No + s A s abs s + s A
9 8 ad2antrr A No B No abs s A < s B + s A s abs s + s A
10 abssneg A No abs s + s A = abs s A
11 10 adantr A No B No abs s + s A = abs s A
12 11 breq1d A No B No abs s + s A < s B abs s A < s B
13 12 biimpar A No B No abs s A < s B abs s + s A < s B
14 2 5 6 9 13 slelttrd A No B No abs s A < s B + s A < s B
15 simpll A No B No abs s A < s B A No
16 absscl A No abs s A No
17 16 ad2antrr A No B No abs s A < s B abs s A No
18 sleabs A No A s abs s A
19 18 ad2antrr A No B No abs s A < s B A s abs s A
20 simpr A No B No abs s A < s B abs s A < s B
21 15 17 6 19 20 slelttrd A No B No abs s A < s B A < s B
22 14 21 jca A No B No abs s A < s B + s A < s B A < s B
23 22 ex A No B No abs s A < s B + s A < s B A < s B
24 abssor A No abs s A = A abs s A = + s A
25 24 adantr A No B No abs s A = A abs s A = + s A
26 breq1 abs s A = A abs s A < s B A < s B
27 26 biimprd abs s A = A A < s B abs s A < s B
28 breq1 abs s A = + s A abs s A < s B + s A < s B
29 28 biimprd abs s A = + s A + s A < s B abs s A < s B
30 27 29 jaoa abs s A = A abs s A = + s A A < s B + s A < s B abs s A < s B
31 30 ancomsd abs s A = A abs s A = + s A + s A < s B A < s B abs s A < s B
32 25 31 syl A No B No + s A < s B A < s B abs s A < s B
33 23 32 impbid A No B No abs s A < s B + s A < s B A < s B
34 1 adantr A No B No + s A No
35 simpr A No B No B No
36 34 35 sltnegd A No B No + s A < s B + s B < s + s + s A
37 negnegs A No + s + s A = A
38 37 adantr A No B No + s + s A = A
39 38 breq2d A No B No + s B < s + s + s A + s B < s A
40 36 39 bitrd A No B No + s A < s B + s B < s A
41 40 anbi1d A No B No + s A < s B A < s B + s B < s A A < s B
42 33 41 bitrd A No B No abs s A < s B + s B < s A A < s B