Metamath Proof Explorer


Theorem sleabs

Description: A surreal is less than or equal to its absolute value. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion sleabs A No A s abs s A

Proof

Step Hyp Ref Expression
1 slerflex A No A s A
2 1 adantr A No 0 s s A A s A
3 abssid A No 0 s s A abs s A = A
4 2 3 breqtrrd A No 0 s s A A s abs s A
5 simpl A No A s 0 s A No
6 0sno 0 s No
7 6 a1i A No A s 0 s 0 s No
8 negscl A No + s A No
9 8 adantr A No A s 0 s + s A No
10 simpr A No A s 0 s A s 0 s
11 negs0s + s 0 s = 0 s
12 5 7 slenegd A No A s 0 s A s 0 s + s 0 s s + s A
13 10 12 mpbid A No A s 0 s + s 0 s s + s A
14 11 13 eqbrtrrid A No A s 0 s 0 s s + s A
15 5 7 9 10 14 sletrd A No A s 0 s A s + s A
16 abssnid A No A s 0 s abs s A = + s A
17 15 16 breqtrrd A No A s 0 s A s abs s A
18 sletric 0 s No A No 0 s s A A s 0 s
19 6 18 mpan A No 0 s s A A s 0 s
20 4 17 19 mpjaodan A No A s abs s A