Metamath Proof Explorer


Theorem abssneg

Description: Surreal absolute value of the negative. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion abssneg A No abs s + s A = abs s A

Proof

Step Hyp Ref Expression
1 negnegs A No + s + s A = A
2 1 adantr A No 0 s s A + s + s A = A
3 negscl A No + s A No
4 0sno 0 s No
5 4 a1i A No 0 s No
6 id A No A No
7 5 6 slenegd A No 0 s s A + s A s + s 0 s
8 negs0s + s 0 s = 0 s
9 8 breq2i + s A s + s 0 s + s A s 0 s
10 7 9 bitrdi A No 0 s s A + s A s 0 s
11 10 biimpa A No 0 s s A + s A s 0 s
12 abssnid + s A No + s A s 0 s abs s + s A = + s + s A
13 3 11 12 syl2an2r A No 0 s s A abs s + s A = + s + s A
14 abssid A No 0 s s A abs s A = A
15 2 13 14 3eqtr4d A No 0 s s A abs s + s A = abs s A
16 6 5 slenegd A No A s 0 s + s 0 s s + s A
17 8 breq1i + s 0 s s + s A 0 s s + s A
18 16 17 bitrdi A No A s 0 s 0 s s + s A
19 18 biimpa A No A s 0 s 0 s s + s A
20 abssid + s A No 0 s s + s A abs s + s A = + s A
21 3 19 20 syl2an2r A No A s 0 s abs s + s A = + s A
22 abssnid A No A s 0 s abs s A = + s A
23 21 22 eqtr4d A No A s 0 s abs s + s A = abs s A
24 sletric 0 s No A No 0 s s A A s 0 s
25 4 24 mpan A No 0 s s A A s 0 s
26 15 23 25 mpjaodan A No abs s + s A = abs s A