Metamath Proof Explorer


Theorem abssneg

Description: Surreal absolute value of the negative. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion abssneg ( 𝐴 No → ( abss ‘ ( -us𝐴 ) ) = ( abss𝐴 ) )

Proof

Step Hyp Ref Expression
1 negnegs ( 𝐴 No → ( -us ‘ ( -us𝐴 ) ) = 𝐴 )
2 1 adantr ( ( 𝐴 No ∧ 0s ≤s 𝐴 ) → ( -us ‘ ( -us𝐴 ) ) = 𝐴 )
3 negscl ( 𝐴 No → ( -us𝐴 ) ∈ No )
4 0sno 0s No
5 4 a1i ( 𝐴 No → 0s No )
6 id ( 𝐴 No 𝐴 No )
7 5 6 slenegd ( 𝐴 No → ( 0s ≤s 𝐴 ↔ ( -us𝐴 ) ≤s ( -us ‘ 0s ) ) )
8 negs0s ( -us ‘ 0s ) = 0s
9 8 breq2i ( ( -us𝐴 ) ≤s ( -us ‘ 0s ) ↔ ( -us𝐴 ) ≤s 0s )
10 7 9 bitrdi ( 𝐴 No → ( 0s ≤s 𝐴 ↔ ( -us𝐴 ) ≤s 0s ) )
11 10 biimpa ( ( 𝐴 No ∧ 0s ≤s 𝐴 ) → ( -us𝐴 ) ≤s 0s )
12 abssnid ( ( ( -us𝐴 ) ∈ No ∧ ( -us𝐴 ) ≤s 0s ) → ( abss ‘ ( -us𝐴 ) ) = ( -us ‘ ( -us𝐴 ) ) )
13 3 11 12 syl2an2r ( ( 𝐴 No ∧ 0s ≤s 𝐴 ) → ( abss ‘ ( -us𝐴 ) ) = ( -us ‘ ( -us𝐴 ) ) )
14 abssid ( ( 𝐴 No ∧ 0s ≤s 𝐴 ) → ( abss𝐴 ) = 𝐴 )
15 2 13 14 3eqtr4d ( ( 𝐴 No ∧ 0s ≤s 𝐴 ) → ( abss ‘ ( -us𝐴 ) ) = ( abss𝐴 ) )
16 6 5 slenegd ( 𝐴 No → ( 𝐴 ≤s 0s ↔ ( -us ‘ 0s ) ≤s ( -us𝐴 ) ) )
17 8 breq1i ( ( -us ‘ 0s ) ≤s ( -us𝐴 ) ↔ 0s ≤s ( -us𝐴 ) )
18 16 17 bitrdi ( 𝐴 No → ( 𝐴 ≤s 0s ↔ 0s ≤s ( -us𝐴 ) ) )
19 18 biimpa ( ( 𝐴 No 𝐴 ≤s 0s ) → 0s ≤s ( -us𝐴 ) )
20 abssid ( ( ( -us𝐴 ) ∈ No ∧ 0s ≤s ( -us𝐴 ) ) → ( abss ‘ ( -us𝐴 ) ) = ( -us𝐴 ) )
21 3 19 20 syl2an2r ( ( 𝐴 No 𝐴 ≤s 0s ) → ( abss ‘ ( -us𝐴 ) ) = ( -us𝐴 ) )
22 abssnid ( ( 𝐴 No 𝐴 ≤s 0s ) → ( abss𝐴 ) = ( -us𝐴 ) )
23 21 22 eqtr4d ( ( 𝐴 No 𝐴 ≤s 0s ) → ( abss ‘ ( -us𝐴 ) ) = ( abss𝐴 ) )
24 sletric ( ( 0s No 𝐴 No ) → ( 0s ≤s 𝐴𝐴 ≤s 0s ) )
25 4 24 mpan ( 𝐴 No → ( 0s ≤s 𝐴𝐴 ≤s 0s ) )
26 15 23 25 mpjaodan ( 𝐴 No → ( abss ‘ ( -us𝐴 ) ) = ( abss𝐴 ) )