Metamath Proof Explorer


Theorem remulscllem2

Description: Lemma for remulscl . Bound A and B above and below. (Contributed by Scott Fenton, 16-Apr-2025)

Ref Expression
Assertion remulscllem2
|- ( ( ( A e. No /\ B e. No ) /\ ( ( N e. NN_s /\ M e. NN_s ) /\ ( ( ( -us ` N )  E. p e. NN_s ( ( -us ` p ) 

Proof

Step Hyp Ref Expression
1 breq2
 |-  ( p = ( N x.s M ) -> ( ( abs_s ` ( A x.s B ) )  ( abs_s ` ( A x.s B ) ) 
2 nnmulscl
 |-  ( ( N e. NN_s /\ M e. NN_s ) -> ( N x.s M ) e. NN_s )
3 2 ad2antlr
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( N x.s M ) e. NN_s )
4 absmuls
 |-  ( ( A e. No /\ B e. No ) -> ( abs_s ` ( A x.s B ) ) = ( ( abs_s ` A ) x.s ( abs_s ` B ) ) )
5 4 ad2antrr
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( abs_s ` ( A x.s B ) ) = ( ( abs_s ` A ) x.s ( abs_s ` B ) ) )
6 absscl
 |-  ( A e. No -> ( abs_s ` A ) e. No )
7 6 ad3antrrr
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( abs_s ` A ) e. No )
8 simplrl
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  N e. NN_s )
9 8 nnsnod
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  N e. No )
10 absscl
 |-  ( B e. No -> ( abs_s ` B ) e. No )
11 10 ad3antlr
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( abs_s ` B ) e. No )
12 simplrr
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  M e. NN_s )
13 12 nnsnod
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  M e. No )
14 abssge0
 |-  ( A e. No -> 0s <_s ( abs_s ` A ) )
15 14 ad3antrrr
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  0s <_s ( abs_s ` A ) )
16 simprl
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( abs_s ` A ) 
17 abssge0
 |-  ( B e. No -> 0s <_s ( abs_s ` B ) )
18 17 ad3antlr
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  0s <_s ( abs_s ` B ) )
19 simprr
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( abs_s ` B ) 
20 7 9 11 13 15 16 18 19 sltmul12ad
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( ( abs_s ` A ) x.s ( abs_s ` B ) ) 
21 5 20 eqbrtrd
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( abs_s ` ( A x.s B ) ) 
22 1 3 21 rspcedvdw
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  E. p e. NN_s ( abs_s ` ( A x.s B ) ) 
23 22 ex
 |-  ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( ( ( abs_s ` A )  E. p e. NN_s ( abs_s ` ( A x.s B ) ) 
24 nnsno
 |-  ( N e. NN_s -> N e. No )
25 absslt
 |-  ( ( A e. No /\ N e. No ) -> ( ( abs_s ` A )  ( ( -us ` N ) 
26 24 25 sylan2
 |-  ( ( A e. No /\ N e. NN_s ) -> ( ( abs_s ` A )  ( ( -us ` N ) 
27 nnsno
 |-  ( M e. NN_s -> M e. No )
28 absslt
 |-  ( ( B e. No /\ M e. No ) -> ( ( abs_s ` B )  ( ( -us ` M ) 
29 27 28 sylan2
 |-  ( ( B e. No /\ M e. NN_s ) -> ( ( abs_s ` B )  ( ( -us ` M ) 
30 26 29 bi2anan9
 |-  ( ( ( A e. No /\ N e. NN_s ) /\ ( B e. No /\ M e. NN_s ) ) -> ( ( ( abs_s ` A )  ( ( ( -us ` N ) 
31 30 an4s
 |-  ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( ( ( abs_s ` A )  ( ( ( -us ` N ) 
32 mulscl
 |-  ( ( A e. No /\ B e. No ) -> ( A x.s B ) e. No )
33 32 adantr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( A x.s B ) e. No )
34 nnsno
 |-  ( p e. NN_s -> p e. No )
35 absslt
 |-  ( ( ( A x.s B ) e. No /\ p e. No ) -> ( ( abs_s ` ( A x.s B ) )  ( ( -us ` p ) 
36 33 34 35 syl2an
 |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ p e. NN_s ) -> ( ( abs_s ` ( A x.s B ) )  ( ( -us ` p ) 
37 36 rexbidva
 |-  ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( E. p e. NN_s ( abs_s ` ( A x.s B ) )  E. p e. NN_s ( ( -us ` p ) 
38 23 31 37 3imtr3d
 |-  ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( ( ( ( -us ` N )  E. p e. NN_s ( ( -us ` p ) 
39 38 impr
 |-  ( ( ( A e. No /\ B e. No ) /\ ( ( N e. NN_s /\ M e. NN_s ) /\ ( ( ( -us ` N )  E. p e. NN_s ( ( -us ` p )