Step |
Hyp |
Ref |
Expression |
1 |
|
breq2 |
|- ( p = ( N x.s M ) -> ( ( abs_s ` ( A x.s B ) ) ( abs_s ` ( A x.s B ) ) |
2 |
|
nnmulscl |
|- ( ( N e. NN_s /\ M e. NN_s ) -> ( N x.s M ) e. NN_s ) |
3 |
2
|
ad2antlr |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) ( N x.s M ) e. NN_s ) |
4 |
|
absmuls |
|- ( ( A e. No /\ B e. No ) -> ( abs_s ` ( A x.s B ) ) = ( ( abs_s ` A ) x.s ( abs_s ` B ) ) ) |
5 |
4
|
ad2antrr |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) ( abs_s ` ( A x.s B ) ) = ( ( abs_s ` A ) x.s ( abs_s ` B ) ) ) |
6 |
|
absscl |
|- ( A e. No -> ( abs_s ` A ) e. No ) |
7 |
6
|
ad3antrrr |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) ( abs_s ` A ) e. No ) |
8 |
|
simplrl |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) N e. NN_s ) |
9 |
8
|
nnsnod |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) N e. No ) |
10 |
|
absscl |
|- ( B e. No -> ( abs_s ` B ) e. No ) |
11 |
10
|
ad3antlr |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) ( abs_s ` B ) e. No ) |
12 |
|
simplrr |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) M e. NN_s ) |
13 |
12
|
nnsnod |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) M e. No ) |
14 |
|
abssge0 |
|- ( A e. No -> 0s <_s ( abs_s ` A ) ) |
15 |
14
|
ad3antrrr |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) 0s <_s ( abs_s ` A ) ) |
16 |
|
simprl |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) ( abs_s ` A ) |
17 |
|
abssge0 |
|- ( B e. No -> 0s <_s ( abs_s ` B ) ) |
18 |
17
|
ad3antlr |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) 0s <_s ( abs_s ` B ) ) |
19 |
|
simprr |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) ( abs_s ` B ) |
20 |
7 9 11 13 15 16 18 19
|
sltmul12ad |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) ( ( abs_s ` A ) x.s ( abs_s ` B ) ) |
21 |
5 20
|
eqbrtrd |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) ( abs_s ` ( A x.s B ) ) |
22 |
1 3 21
|
rspcedvdw |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A ) E. p e. NN_s ( abs_s ` ( A x.s B ) ) |
23 |
22
|
ex |
|- ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( ( ( abs_s ` A ) E. p e. NN_s ( abs_s ` ( A x.s B ) ) |
24 |
|
nnsno |
|- ( N e. NN_s -> N e. No ) |
25 |
|
absslt |
|- ( ( A e. No /\ N e. No ) -> ( ( abs_s ` A ) ( ( -us ` N ) |
26 |
24 25
|
sylan2 |
|- ( ( A e. No /\ N e. NN_s ) -> ( ( abs_s ` A ) ( ( -us ` N ) |
27 |
|
nnsno |
|- ( M e. NN_s -> M e. No ) |
28 |
|
absslt |
|- ( ( B e. No /\ M e. No ) -> ( ( abs_s ` B ) ( ( -us ` M ) |
29 |
27 28
|
sylan2 |
|- ( ( B e. No /\ M e. NN_s ) -> ( ( abs_s ` B ) ( ( -us ` M ) |
30 |
26 29
|
bi2anan9 |
|- ( ( ( A e. No /\ N e. NN_s ) /\ ( B e. No /\ M e. NN_s ) ) -> ( ( ( abs_s ` A ) ( ( ( -us ` N ) |
31 |
30
|
an4s |
|- ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( ( ( abs_s ` A ) ( ( ( -us ` N ) |
32 |
|
mulscl |
|- ( ( A e. No /\ B e. No ) -> ( A x.s B ) e. No ) |
33 |
32
|
adantr |
|- ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( A x.s B ) e. No ) |
34 |
|
nnsno |
|- ( p e. NN_s -> p e. No ) |
35 |
|
absslt |
|- ( ( ( A x.s B ) e. No /\ p e. No ) -> ( ( abs_s ` ( A x.s B ) ) ( ( -us ` p ) |
36 |
33 34 35
|
syl2an |
|- ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ p e. NN_s ) -> ( ( abs_s ` ( A x.s B ) ) ( ( -us ` p ) |
37 |
36
|
rexbidva |
|- ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( E. p e. NN_s ( abs_s ` ( A x.s B ) ) E. p e. NN_s ( ( -us ` p ) |
38 |
23 31 37
|
3imtr3d |
|- ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( ( ( ( -us ` N ) E. p e. NN_s ( ( -us ` p ) |
39 |
38
|
impr |
|- ( ( ( A e. No /\ B e. No ) /\ ( ( N e. NN_s /\ M e. NN_s ) /\ ( ( ( -us ` N ) E. p e. NN_s ( ( -us ` p ) |