| Step | Hyp | Ref | Expression | 
						
							| 1 |  | breq2 |  |-  ( p = ( N x.s M ) -> ( ( abs_s ` ( A x.s B ) )  ( abs_s ` ( A x.s B ) )  | 
						
							| 2 |  | nnmulscl |  |-  ( ( N e. NN_s /\ M e. NN_s ) -> ( N x.s M ) e. NN_s ) | 
						
							| 3 | 2 | ad2antlr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( N x.s M ) e. NN_s ) | 
						
							| 4 |  | absmuls |  |-  ( ( A e. No /\ B e. No ) -> ( abs_s ` ( A x.s B ) ) = ( ( abs_s ` A ) x.s ( abs_s ` B ) ) ) | 
						
							| 5 | 4 | ad2antrr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( abs_s ` ( A x.s B ) ) = ( ( abs_s ` A ) x.s ( abs_s ` B ) ) ) | 
						
							| 6 |  | absscl |  |-  ( A e. No -> ( abs_s ` A ) e. No ) | 
						
							| 7 | 6 | ad3antrrr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( abs_s ` A ) e. No ) | 
						
							| 8 |  | simplrl |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  N e. NN_s ) | 
						
							| 9 | 8 | nnsnod |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  N e. No ) | 
						
							| 10 |  | absscl |  |-  ( B e. No -> ( abs_s ` B ) e. No ) | 
						
							| 11 | 10 | ad3antlr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( abs_s ` B ) e. No ) | 
						
							| 12 |  | simplrr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  M e. NN_s ) | 
						
							| 13 | 12 | nnsnod |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  M e. No ) | 
						
							| 14 |  | abssge0 |  |-  ( A e. No -> 0s <_s ( abs_s ` A ) ) | 
						
							| 15 | 14 | ad3antrrr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  0s <_s ( abs_s ` A ) ) | 
						
							| 16 |  | simprl |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( abs_s ` A )  | 
						
							| 17 |  | abssge0 |  |-  ( B e. No -> 0s <_s ( abs_s ` B ) ) | 
						
							| 18 | 17 | ad3antlr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  0s <_s ( abs_s ` B ) ) | 
						
							| 19 |  | simprr |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( abs_s ` B )  | 
						
							| 20 | 7 9 11 13 15 16 18 19 | sltmul12ad |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( ( abs_s ` A ) x.s ( abs_s ` B ) )  | 
						
							| 21 | 5 20 | eqbrtrd |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  ( abs_s ` ( A x.s B ) )  | 
						
							| 22 | 1 3 21 | rspcedvdw |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ ( ( abs_s ` A )  E. p e. NN_s ( abs_s ` ( A x.s B ) )  | 
						
							| 23 | 22 | ex |  |-  ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( ( ( abs_s ` A )  E. p e. NN_s ( abs_s ` ( A x.s B ) )  | 
						
							| 24 |  | nnsno |  |-  ( N e. NN_s -> N e. No ) | 
						
							| 25 |  | absslt |  |-  ( ( A e. No /\ N e. No ) -> ( ( abs_s ` A )  ( ( -us ` N )  | 
						
							| 26 | 24 25 | sylan2 |  |-  ( ( A e. No /\ N e. NN_s ) -> ( ( abs_s ` A )  ( ( -us ` N )  | 
						
							| 27 |  | nnsno |  |-  ( M e. NN_s -> M e. No ) | 
						
							| 28 |  | absslt |  |-  ( ( B e. No /\ M e. No ) -> ( ( abs_s ` B )  ( ( -us ` M )  | 
						
							| 29 | 27 28 | sylan2 |  |-  ( ( B e. No /\ M e. NN_s ) -> ( ( abs_s ` B )  ( ( -us ` M )  | 
						
							| 30 | 26 29 | bi2anan9 |  |-  ( ( ( A e. No /\ N e. NN_s ) /\ ( B e. No /\ M e. NN_s ) ) -> ( ( ( abs_s ` A )  ( ( ( -us ` N )  | 
						
							| 31 | 30 | an4s |  |-  ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( ( ( abs_s ` A )  ( ( ( -us ` N )  | 
						
							| 32 |  | mulscl |  |-  ( ( A e. No /\ B e. No ) -> ( A x.s B ) e. No ) | 
						
							| 33 | 32 | adantr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( A x.s B ) e. No ) | 
						
							| 34 |  | nnsno |  |-  ( p e. NN_s -> p e. No ) | 
						
							| 35 |  | absslt |  |-  ( ( ( A x.s B ) e. No /\ p e. No ) -> ( ( abs_s ` ( A x.s B ) )  ( ( -us ` p )  | 
						
							| 36 | 33 34 35 | syl2an |  |-  ( ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) /\ p e. NN_s ) -> ( ( abs_s ` ( A x.s B ) )  ( ( -us ` p )  | 
						
							| 37 | 36 | rexbidva |  |-  ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( E. p e. NN_s ( abs_s ` ( A x.s B ) )  E. p e. NN_s ( ( -us ` p )  | 
						
							| 38 | 23 31 37 | 3imtr3d |  |-  ( ( ( A e. No /\ B e. No ) /\ ( N e. NN_s /\ M e. NN_s ) ) -> ( ( ( ( -us ` N )  E. p e. NN_s ( ( -us ` p )  | 
						
							| 39 | 38 | impr |  |-  ( ( ( A e. No /\ B e. No ) /\ ( ( N e. NN_s /\ M e. NN_s ) /\ ( ( ( -us ` N )  E. p e. NN_s ( ( -us ` p )  |