| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sltmul12ad.1 | ⊢ ( 𝜑  →  𝐴  ∈   No  ) | 
						
							| 2 |  | sltmul12ad.2 | ⊢ ( 𝜑  →  𝐵  ∈   No  ) | 
						
							| 3 |  | sltmul12ad.3 | ⊢ ( 𝜑  →  𝐶  ∈   No  ) | 
						
							| 4 |  | sltmul12ad.4 | ⊢ ( 𝜑  →  𝐷  ∈   No  ) | 
						
							| 5 |  | sltmul12ad.5 | ⊢ ( 𝜑  →   0s   ≤s  𝐴 ) | 
						
							| 6 |  | sltmul12ad.6 | ⊢ ( 𝜑  →  𝐴  <s  𝐵 ) | 
						
							| 7 |  | sltmul12ad.7 | ⊢ ( 𝜑  →   0s   ≤s  𝐶 ) | 
						
							| 8 |  | sltmul12ad.8 | ⊢ ( 𝜑  →  𝐶  <s  𝐷 ) | 
						
							| 9 | 1 3 | mulscld | ⊢ ( 𝜑  →  ( 𝐴  ·s  𝐶 )  ∈   No  ) | 
						
							| 10 | 2 3 | mulscld | ⊢ ( 𝜑  →  ( 𝐵  ·s  𝐶 )  ∈   No  ) | 
						
							| 11 | 2 4 | mulscld | ⊢ ( 𝜑  →  ( 𝐵  ·s  𝐷 )  ∈   No  ) | 
						
							| 12 | 1 2 6 | sltled | ⊢ ( 𝜑  →  𝐴  ≤s  𝐵 ) | 
						
							| 13 | 1 2 3 7 12 | slemul1ad | ⊢ ( 𝜑  →  ( 𝐴  ·s  𝐶 )  ≤s  ( 𝐵  ·s  𝐶 ) ) | 
						
							| 14 |  | 0sno | ⊢  0s   ∈   No | 
						
							| 15 | 14 | a1i | ⊢ ( 𝜑  →   0s   ∈   No  ) | 
						
							| 16 | 15 1 2 5 6 | slelttrd | ⊢ ( 𝜑  →   0s   <s  𝐵 ) | 
						
							| 17 | 3 4 2 16 | sltmul2d | ⊢ ( 𝜑  →  ( 𝐶  <s  𝐷  ↔  ( 𝐵  ·s  𝐶 )  <s  ( 𝐵  ·s  𝐷 ) ) ) | 
						
							| 18 | 8 17 | mpbid | ⊢ ( 𝜑  →  ( 𝐵  ·s  𝐶 )  <s  ( 𝐵  ·s  𝐷 ) ) | 
						
							| 19 | 9 10 11 13 18 | slelttrd | ⊢ ( 𝜑  →  ( 𝐴  ·s  𝐶 )  <s  ( 𝐵  ·s  𝐷 ) ) |