Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|
2 |
1
|
oveq2d |
|
3 |
2
|
eqeq2d |
|
4 |
|
nnmulscl |
|
5 |
|
1sno |
|
6 |
5
|
a1i |
|
7 |
|
nnsno |
|
8 |
7
|
adantr |
|
9 |
|
nnsno |
|
10 |
9
|
adantl |
|
11 |
|
nnne0s |
|
12 |
11
|
adantr |
|
13 |
|
nnne0s |
|
14 |
13
|
adantl |
|
15 |
6 8 6 10 12 14
|
divmuldivsd |
|
16 |
|
mulsrid |
|
17 |
5 16
|
ax-mp |
|
18 |
17
|
oveq1i |
|
19 |
15 18
|
eqtrdi |
|
20 |
19
|
oveq2d |
|
21 |
3 4 20
|
rspcedvdw |
|
22 |
|
eqeq1 |
|
23 |
22
|
rexbidv |
|
24 |
21 23
|
syl5ibrcom |
|
25 |
24
|
rexlimivv |
|
26 |
5
|
a1i |
|
27 |
|
nnsno |
|
28 |
|
nnne0s |
|
29 |
26 27 28
|
divscld |
|
30 |
29
|
mulsridd |
|
31 |
30
|
eqcomd |
|
32 |
31
|
oveq2d |
|
33 |
|
1nns |
|
34 |
|
oveq2 |
|
35 |
34
|
oveq1d |
|
36 |
35
|
oveq2d |
|
37 |
36
|
eqeq2d |
|
38 |
|
oveq2 |
|
39 |
|
divs1 |
|
40 |
5 39
|
ax-mp |
|
41 |
38 40
|
eqtrdi |
|
42 |
41
|
oveq2d |
|
43 |
42
|
oveq2d |
|
44 |
43
|
eqeq2d |
|
45 |
37 44
|
rspc2ev |
|
46 |
33 45
|
mp3an2 |
|
47 |
32 46
|
mpdan |
|
48 |
|
eqeq1 |
|
49 |
48
|
2rexbidv |
|
50 |
47 49
|
syl5ibrcom |
|
51 |
50
|
rexlimiv |
|
52 |
25 51
|
impbii |
|