Metamath Proof Explorer


Theorem renegscl

Description: The surreal reals are closed under negation. Part of theorem 13(ii) of Conway p. 24. (Contributed by Scott Fenton, 15-Apr-2025)

Ref Expression
Assertion renegscl ( 𝐴 ∈ ℝs → ( -us𝐴 ) ∈ ℝs )

Proof

Step Hyp Ref Expression
1 negscl ( 𝐴 No → ( -us𝐴 ) ∈ No )
2 1 adantr ( ( 𝐴 No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( -us𝐴 ) ∈ No )
3 nnsno ( 𝑛 ∈ ℕs𝑛 No )
4 3 adantl ( ( 𝐴 No 𝑛 ∈ ℕs ) → 𝑛 No )
5 4 negscld ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( -us𝑛 ) ∈ No )
6 simpl ( ( 𝐴 No 𝑛 ∈ ℕs ) → 𝐴 No )
7 5 6 sltnegd ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( ( -us𝑛 ) <s 𝐴 ↔ ( -us𝐴 ) <s ( -us ‘ ( -us𝑛 ) ) ) )
8 negnegs ( 𝑛 No → ( -us ‘ ( -us𝑛 ) ) = 𝑛 )
9 4 8 syl ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( -us ‘ ( -us𝑛 ) ) = 𝑛 )
10 9 breq2d ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( ( -us𝐴 ) <s ( -us ‘ ( -us𝑛 ) ) ↔ ( -us𝐴 ) <s 𝑛 ) )
11 7 10 bitrd ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( ( -us𝑛 ) <s 𝐴 ↔ ( -us𝐴 ) <s 𝑛 ) )
12 6 4 sltnegd ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( 𝐴 <s 𝑛 ↔ ( -us𝑛 ) <s ( -us𝐴 ) ) )
13 11 12 anbi12d ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ↔ ( ( -us𝐴 ) <s 𝑛 ∧ ( -us𝑛 ) <s ( -us𝐴 ) ) ) )
14 13 biancomd ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ↔ ( ( -us𝑛 ) <s ( -us𝐴 ) ∧ ( -us𝐴 ) <s 𝑛 ) ) )
15 14 rexbidva ( 𝐴 No → ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ↔ ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s ( -us𝐴 ) ∧ ( -us𝐴 ) <s 𝑛 ) ) )
16 15 biimpa ( ( 𝐴 No ∧ ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ) → ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s ( -us𝐴 ) ∧ ( -us𝐴 ) <s 𝑛 ) )
17 16 adantrr ( ( 𝐴 No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s ( -us𝐴 ) ∧ ( -us𝐴 ) <s 𝑛 ) )
18 recut ( 𝐴 No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } )
19 18 adantr ( ( 𝐴 No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } )
20 simprr ( ( 𝐴 No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) )
21 19 20 negsunif ( ( 𝐴 No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( -us𝐴 ) = ( ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |s ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ) )
22 negsfn -us Fn No
23 ssltss2 ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ⊆ No )
24 18 23 syl ( 𝐴 No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ⊆ No )
25 fvelimab ( ( -us Fn No ∧ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ⊆ No ) → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us𝑧 ) = 𝑦 ) )
26 22 24 25 sylancr ( 𝐴 No → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us𝑧 ) = 𝑦 ) )
27 eqeq1 ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) )
28 27 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) )
29 28 rexab ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us𝑧 ) = 𝑦 ↔ ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) )
30 rexcom4 ( ∃ 𝑛 ∈ ℕs𝑧 ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) ↔ ∃ 𝑧𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) )
31 ovex ( 𝐴 +s ( 1s /su 𝑛 ) ) ∈ V
32 fveqeq2 ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( ( -us𝑧 ) = 𝑦 ↔ ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ) )
33 31 32 ceqsexv ( ∃ 𝑧 ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) ↔ ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 )
34 33 rexbii ( ∃ 𝑛 ∈ ℕs𝑧 ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 )
35 r19.41v ( ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) )
36 35 exbii ( ∃ 𝑧𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) ↔ ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) )
37 30 34 36 3bitr3ri ( ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 )
38 29 37 bitri ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us𝑧 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 )
39 1sno 1s No
40 39 a1i ( 𝑛 ∈ ℕs → 1s No )
41 nnne0s ( 𝑛 ∈ ℕs𝑛 ≠ 0s )
42 40 3 41 divscld ( 𝑛 ∈ ℕs → ( 1s /su 𝑛 ) ∈ No )
43 42 adantl ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( 1s /su 𝑛 ) ∈ No )
44 negsdi ( ( 𝐴 No ∧ ( 1s /su 𝑛 ) ∈ No ) → ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = ( ( -us𝐴 ) +s ( -us ‘ ( 1s /su 𝑛 ) ) ) )
45 43 44 syldan ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = ( ( -us𝐴 ) +s ( -us ‘ ( 1s /su 𝑛 ) ) ) )
46 1 adantr ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( -us𝐴 ) ∈ No )
47 46 43 subsvald ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) = ( ( -us𝐴 ) +s ( -us ‘ ( 1s /su 𝑛 ) ) ) )
48 45 47 eqtr4d ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) )
49 48 eqeq1d ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) = 𝑦 ) )
50 eqcom ( ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) = 𝑦𝑦 = ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) )
51 49 50 bitrdi ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦𝑦 = ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) ) )
52 51 rexbidva ( 𝐴 No → ( ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) ) )
53 38 52 bitrid ( 𝐴 No → ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us𝑧 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) ) )
54 26 53 bitrd ( 𝐴 No → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) ) )
55 54 eqabdv ( 𝐴 No → ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) = { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) } )
56 ssltss1 ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ⊆ No )
57 18 56 syl ( 𝐴 No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ⊆ No )
58 fvelimab ( ( -us Fn No ∧ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ⊆ No ) → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us𝑧 ) = 𝑦 ) )
59 22 57 58 sylancr ( 𝐴 No → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us𝑧 ) = 𝑦 ) )
60 eqeq1 ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ↔ 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) )
61 60 rexbidv ( 𝑥 = 𝑧 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) )
62 61 rexab ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us𝑧 ) = 𝑦 ↔ ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) )
63 rexcom4 ( ∃ 𝑛 ∈ ℕs𝑧 ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) ↔ ∃ 𝑧𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) )
64 ovex ( 𝐴 -s ( 1s /su 𝑛 ) ) ∈ V
65 fveqeq2 ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( ( -us𝑧 ) = 𝑦 ↔ ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ) )
66 64 65 ceqsexv ( ∃ 𝑧 ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) ↔ ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 )
67 66 rexbii ( ∃ 𝑛 ∈ ℕs𝑧 ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 )
68 r19.41v ( ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) )
69 68 exbii ( ∃ 𝑧𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) ↔ ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) )
70 63 67 69 3bitr3ri ( ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us𝑧 ) = 𝑦 ) ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 )
71 62 70 bitri ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us𝑧 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 )
72 6 43 subsvald ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( 𝐴 -s ( 1s /su 𝑛 ) ) = ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) )
73 72 fveq2d ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = ( -us ‘ ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) )
74 43 negscld ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( -us ‘ ( 1s /su 𝑛 ) ) ∈ No )
75 negsdi ( ( 𝐴 No ∧ ( -us ‘ ( 1s /su 𝑛 ) ) ∈ No ) → ( -us ‘ ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) = ( ( -us𝐴 ) +s ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) ) )
76 74 75 syldan ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) = ( ( -us𝐴 ) +s ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) ) )
77 negnegs ( ( 1s /su 𝑛 ) ∈ No → ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) = ( 1s /su 𝑛 ) )
78 43 77 syl ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) = ( 1s /su 𝑛 ) )
79 78 oveq2d ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( ( -us𝐴 ) +s ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) ) = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) )
80 73 76 79 3eqtrd ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) )
81 80 eqeq1d ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) = 𝑦 ) )
82 eqcom ( ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) = 𝑦𝑦 = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) )
83 81 82 bitrdi ( ( 𝐴 No 𝑛 ∈ ℕs ) → ( ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦𝑦 = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) ) )
84 83 rexbidva ( 𝐴 No → ( ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) ) )
85 71 84 bitrid ( 𝐴 No → ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us𝑧 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) ) )
86 59 85 bitrd ( 𝐴 No → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) ) )
87 86 eqabdv ( 𝐴 No → ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) = { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) } )
88 55 87 oveq12d ( 𝐴 No → ( ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |s ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) } ) )
89 88 adantr ( ( 𝐴 No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |s ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) } ) )
90 21 89 eqtrd ( ( 𝐴 No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( -us𝐴 ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) } ) )
91 2 17 90 jca32 ( ( 𝐴 No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( ( -us𝐴 ) ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s ( -us𝐴 ) ∧ ( -us𝐴 ) <s 𝑛 ) ∧ ( -us𝐴 ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) } ) ) ) )
92 elreno ( 𝐴 ∈ ℝs ↔ ( 𝐴 No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s 𝐴𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) )
93 elreno ( ( -us𝐴 ) ∈ ℝs ↔ ( ( -us𝐴 ) ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us𝑛 ) <s ( -us𝐴 ) ∧ ( -us𝐴 ) <s 𝑛 ) ∧ ( -us𝐴 ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us𝐴 ) +s ( 1s /su 𝑛 ) ) } ) ) ) )
94 91 92 93 3imtr4i ( 𝐴 ∈ ℝs → ( -us𝐴 ) ∈ ℝs )