| Step | Hyp | Ref | Expression | 
						
							| 1 |  | negscl | ⊢ ( 𝐴  ∈   No   →  (  -us  ‘ 𝐴 )  ∈   No  ) | 
						
							| 2 | 1 | adantr | ⊢ ( ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) )  →  (  -us  ‘ 𝐴 )  ∈   No  ) | 
						
							| 3 |  | nnsno | ⊢ ( 𝑛  ∈  ℕs  →  𝑛  ∈   No  ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  𝑛  ∈   No  ) | 
						
							| 5 | 4 | negscld | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  (  -us  ‘ 𝑛 )  ∈   No  ) | 
						
							| 6 |  | simpl | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  𝐴  ∈   No  ) | 
						
							| 7 | 5 6 | sltnegd | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( (  -us  ‘ 𝑛 )  <s  𝐴  ↔  (  -us  ‘ 𝐴 )  <s  (  -us  ‘ (  -us  ‘ 𝑛 ) ) ) ) | 
						
							| 8 |  | negnegs | ⊢ ( 𝑛  ∈   No   →  (  -us  ‘ (  -us  ‘ 𝑛 ) )  =  𝑛 ) | 
						
							| 9 | 4 8 | syl | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  (  -us  ‘ (  -us  ‘ 𝑛 ) )  =  𝑛 ) | 
						
							| 10 | 9 | breq2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( (  -us  ‘ 𝐴 )  <s  (  -us  ‘ (  -us  ‘ 𝑛 ) )  ↔  (  -us  ‘ 𝐴 )  <s  𝑛 ) ) | 
						
							| 11 | 7 10 | bitrd | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( (  -us  ‘ 𝑛 )  <s  𝐴  ↔  (  -us  ‘ 𝐴 )  <s  𝑛 ) ) | 
						
							| 12 | 6 4 | sltnegd | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( 𝐴  <s  𝑛  ↔  (  -us  ‘ 𝑛 )  <s  (  -us  ‘ 𝐴 ) ) ) | 
						
							| 13 | 11 12 | anbi12d | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ↔  ( (  -us  ‘ 𝐴 )  <s  𝑛  ∧  (  -us  ‘ 𝑛 )  <s  (  -us  ‘ 𝐴 ) ) ) ) | 
						
							| 14 | 13 | biancomd | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ↔  ( (  -us  ‘ 𝑛 )  <s  (  -us  ‘ 𝐴 )  ∧  (  -us  ‘ 𝐴 )  <s  𝑛 ) ) ) | 
						
							| 15 | 14 | rexbidva | ⊢ ( 𝐴  ∈   No   →  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ↔  ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  (  -us  ‘ 𝐴 )  ∧  (  -us  ‘ 𝐴 )  <s  𝑛 ) ) ) | 
						
							| 16 | 15 | biimpa | ⊢ ( ( 𝐴  ∈   No   ∧  ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 ) )  →  ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  (  -us  ‘ 𝐴 )  ∧  (  -us  ‘ 𝐴 )  <s  𝑛 ) ) | 
						
							| 17 | 16 | adantrr | ⊢ ( ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) )  →  ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  (  -us  ‘ 𝐴 )  ∧  (  -us  ‘ 𝐴 )  <s  𝑛 ) ) | 
						
							| 18 |  | recut | ⊢ ( 𝐴  ∈   No   →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  <<s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) | 
						
							| 19 | 18 | adantr | ⊢ ( ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) )  →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  <<s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) | 
						
							| 20 |  | simprr | ⊢ ( ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) )  →  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) | 
						
							| 21 | 19 20 | negsunif | ⊢ ( ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) )  →  (  -us  ‘ 𝐴 )  =  ( (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  |s  (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } ) ) ) | 
						
							| 22 |  | negsfn | ⊢  -us   Fn   No | 
						
							| 23 |  | ssltss2 | ⊢ ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  <<s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) }  →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) }  ⊆   No  ) | 
						
							| 24 | 18 23 | syl | ⊢ ( 𝐴  ∈   No   →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) }  ⊆   No  ) | 
						
							| 25 |  | fvelimab | ⊢ ( (  -us   Fn   No   ∧  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) }  ⊆   No  )  →  ( 𝑦  ∈  (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ↔  ∃ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } (  -us  ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 26 | 22 24 25 | sylancr | ⊢ ( 𝐴  ∈   No   →  ( 𝑦  ∈  (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ↔  ∃ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } (  -us  ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 27 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ↔  𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 28 | 27 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ↔  ∃ 𝑛  ∈  ℕs 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 29 | 28 | rexab | ⊢ ( ∃ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } (  -us  ‘ 𝑧 )  =  𝑦  ↔  ∃ 𝑧 ( ∃ 𝑛  ∈  ℕs 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 30 |  | rexcom4 | ⊢ ( ∃ 𝑛  ∈  ℕs ∃ 𝑧 ( 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 )  ↔  ∃ 𝑧 ∃ 𝑛  ∈  ℕs ( 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 31 |  | ovex | ⊢ ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∈  V | 
						
							| 32 |  | fveqeq2 | ⊢ ( 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  →  ( (  -us  ‘ 𝑧 )  =  𝑦  ↔  (  -us  ‘ ( 𝐴  +s  (  1s   /su  𝑛 ) ) )  =  𝑦 ) ) | 
						
							| 33 | 31 32 | ceqsexv | ⊢ ( ∃ 𝑧 ( 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 )  ↔  (  -us  ‘ ( 𝐴  +s  (  1s   /su  𝑛 ) ) )  =  𝑦 ) | 
						
							| 34 | 33 | rexbii | ⊢ ( ∃ 𝑛  ∈  ℕs ∃ 𝑧 ( 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 )  ↔  ∃ 𝑛  ∈  ℕs (  -us  ‘ ( 𝐴  +s  (  1s   /su  𝑛 ) ) )  =  𝑦 ) | 
						
							| 35 |  | r19.41v | ⊢ ( ∃ 𝑛  ∈  ℕs ( 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 )  ↔  ( ∃ 𝑛  ∈  ℕs 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 36 | 35 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑛  ∈  ℕs ( 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 )  ↔  ∃ 𝑧 ( ∃ 𝑛  ∈  ℕs 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 37 | 30 34 36 | 3bitr3ri | ⊢ ( ∃ 𝑧 ( ∃ 𝑛  ∈  ℕs 𝑧  =  ( 𝐴  +s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 )  ↔  ∃ 𝑛  ∈  ℕs (  -us  ‘ ( 𝐴  +s  (  1s   /su  𝑛 ) ) )  =  𝑦 ) | 
						
							| 38 | 29 37 | bitri | ⊢ ( ∃ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } (  -us  ‘ 𝑧 )  =  𝑦  ↔  ∃ 𝑛  ∈  ℕs (  -us  ‘ ( 𝐴  +s  (  1s   /su  𝑛 ) ) )  =  𝑦 ) | 
						
							| 39 |  | 1sno | ⊢  1s   ∈   No | 
						
							| 40 | 39 | a1i | ⊢ ( 𝑛  ∈  ℕs  →   1s   ∈   No  ) | 
						
							| 41 |  | nnne0s | ⊢ ( 𝑛  ∈  ℕs  →  𝑛  ≠   0s  ) | 
						
							| 42 | 40 3 41 | divscld | ⊢ ( 𝑛  ∈  ℕs  →  (  1s   /su  𝑛 )  ∈   No  ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  (  1s   /su  𝑛 )  ∈   No  ) | 
						
							| 44 |  | negsdi | ⊢ ( ( 𝐴  ∈   No   ∧  (  1s   /su  𝑛 )  ∈   No  )  →  (  -us  ‘ ( 𝐴  +s  (  1s   /su  𝑛 ) ) )  =  ( (  -us  ‘ 𝐴 )  +s  (  -us  ‘ (  1s   /su  𝑛 ) ) ) ) | 
						
							| 45 | 43 44 | syldan | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  (  -us  ‘ ( 𝐴  +s  (  1s   /su  𝑛 ) ) )  =  ( (  -us  ‘ 𝐴 )  +s  (  -us  ‘ (  1s   /su  𝑛 ) ) ) ) | 
						
							| 46 | 1 | adantr | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  (  -us  ‘ 𝐴 )  ∈   No  ) | 
						
							| 47 | 46 43 | subsvald | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) )  =  ( (  -us  ‘ 𝐴 )  +s  (  -us  ‘ (  1s   /su  𝑛 ) ) ) ) | 
						
							| 48 | 45 47 | eqtr4d | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  (  -us  ‘ ( 𝐴  +s  (  1s   /su  𝑛 ) ) )  =  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) ) ) | 
						
							| 49 | 48 | eqeq1d | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( (  -us  ‘ ( 𝐴  +s  (  1s   /su  𝑛 ) ) )  =  𝑦  ↔  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) )  =  𝑦 ) ) | 
						
							| 50 |  | eqcom | ⊢ ( ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) )  =  𝑦  ↔  𝑦  =  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) ) ) | 
						
							| 51 | 49 50 | bitrdi | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( (  -us  ‘ ( 𝐴  +s  (  1s   /su  𝑛 ) ) )  =  𝑦  ↔  𝑦  =  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 52 | 51 | rexbidva | ⊢ ( 𝐴  ∈   No   →  ( ∃ 𝑛  ∈  ℕs (  -us  ‘ ( 𝐴  +s  (  1s   /su  𝑛 ) ) )  =  𝑦  ↔  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 53 | 38 52 | bitrid | ⊢ ( 𝐴  ∈   No   →  ( ∃ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } (  -us  ‘ 𝑧 )  =  𝑦  ↔  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 54 | 26 53 | bitrd | ⊢ ( 𝐴  ∈   No   →  ( 𝑦  ∈  (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  ↔  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 55 | 54 | eqabdv | ⊢ ( 𝐴  ∈   No   →  (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  =  { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) ) } ) | 
						
							| 56 |  | ssltss1 | ⊢ ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  <<s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) }  →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  ⊆   No  ) | 
						
							| 57 | 18 56 | syl | ⊢ ( 𝐴  ∈   No   →  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  ⊆   No  ) | 
						
							| 58 |  | fvelimab | ⊢ ( (  -us   Fn   No   ∧  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  ⊆   No  )  →  ( 𝑦  ∈  (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } )  ↔  ∃ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } (  -us  ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 59 | 22 57 58 | sylancr | ⊢ ( 𝐴  ∈   No   →  ( 𝑦  ∈  (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } )  ↔  ∃ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } (  -us  ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 60 |  | eqeq1 | ⊢ ( 𝑥  =  𝑧  →  ( 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ↔  𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 61 | 60 | rexbidv | ⊢ ( 𝑥  =  𝑧  →  ( ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ↔  ∃ 𝑛  ∈  ℕs 𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 62 | 61 | rexab | ⊢ ( ∃ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } (  -us  ‘ 𝑧 )  =  𝑦  ↔  ∃ 𝑧 ( ∃ 𝑛  ∈  ℕs 𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 63 |  | rexcom4 | ⊢ ( ∃ 𝑛  ∈  ℕs ∃ 𝑧 ( 𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 )  ↔  ∃ 𝑧 ∃ 𝑛  ∈  ℕs ( 𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 64 |  | ovex | ⊢ ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∈  V | 
						
							| 65 |  | fveqeq2 | ⊢ ( 𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  →  ( (  -us  ‘ 𝑧 )  =  𝑦  ↔  (  -us  ‘ ( 𝐴  -s  (  1s   /su  𝑛 ) ) )  =  𝑦 ) ) | 
						
							| 66 | 64 65 | ceqsexv | ⊢ ( ∃ 𝑧 ( 𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 )  ↔  (  -us  ‘ ( 𝐴  -s  (  1s   /su  𝑛 ) ) )  =  𝑦 ) | 
						
							| 67 | 66 | rexbii | ⊢ ( ∃ 𝑛  ∈  ℕs ∃ 𝑧 ( 𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 )  ↔  ∃ 𝑛  ∈  ℕs (  -us  ‘ ( 𝐴  -s  (  1s   /su  𝑛 ) ) )  =  𝑦 ) | 
						
							| 68 |  | r19.41v | ⊢ ( ∃ 𝑛  ∈  ℕs ( 𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 )  ↔  ( ∃ 𝑛  ∈  ℕs 𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 69 | 68 | exbii | ⊢ ( ∃ 𝑧 ∃ 𝑛  ∈  ℕs ( 𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 )  ↔  ∃ 𝑧 ( ∃ 𝑛  ∈  ℕs 𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 ) ) | 
						
							| 70 | 63 67 69 | 3bitr3ri | ⊢ ( ∃ 𝑧 ( ∃ 𝑛  ∈  ℕs 𝑧  =  ( 𝐴  -s  (  1s   /su  𝑛 ) )  ∧  (  -us  ‘ 𝑧 )  =  𝑦 )  ↔  ∃ 𝑛  ∈  ℕs (  -us  ‘ ( 𝐴  -s  (  1s   /su  𝑛 ) ) )  =  𝑦 ) | 
						
							| 71 | 62 70 | bitri | ⊢ ( ∃ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } (  -us  ‘ 𝑧 )  =  𝑦  ↔  ∃ 𝑛  ∈  ℕs (  -us  ‘ ( 𝐴  -s  (  1s   /su  𝑛 ) ) )  =  𝑦 ) | 
						
							| 72 | 6 43 | subsvald | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( 𝐴  -s  (  1s   /su  𝑛 ) )  =  ( 𝐴  +s  (  -us  ‘ (  1s   /su  𝑛 ) ) ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  (  -us  ‘ ( 𝐴  -s  (  1s   /su  𝑛 ) ) )  =  (  -us  ‘ ( 𝐴  +s  (  -us  ‘ (  1s   /su  𝑛 ) ) ) ) ) | 
						
							| 74 | 43 | negscld | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  (  -us  ‘ (  1s   /su  𝑛 ) )  ∈   No  ) | 
						
							| 75 |  | negsdi | ⊢ ( ( 𝐴  ∈   No   ∧  (  -us  ‘ (  1s   /su  𝑛 ) )  ∈   No  )  →  (  -us  ‘ ( 𝐴  +s  (  -us  ‘ (  1s   /su  𝑛 ) ) ) )  =  ( (  -us  ‘ 𝐴 )  +s  (  -us  ‘ (  -us  ‘ (  1s   /su  𝑛 ) ) ) ) ) | 
						
							| 76 | 74 75 | syldan | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  (  -us  ‘ ( 𝐴  +s  (  -us  ‘ (  1s   /su  𝑛 ) ) ) )  =  ( (  -us  ‘ 𝐴 )  +s  (  -us  ‘ (  -us  ‘ (  1s   /su  𝑛 ) ) ) ) ) | 
						
							| 77 |  | negnegs | ⊢ ( (  1s   /su  𝑛 )  ∈   No   →  (  -us  ‘ (  -us  ‘ (  1s   /su  𝑛 ) ) )  =  (  1s   /su  𝑛 ) ) | 
						
							| 78 | 43 77 | syl | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  (  -us  ‘ (  -us  ‘ (  1s   /su  𝑛 ) ) )  =  (  1s   /su  𝑛 ) ) | 
						
							| 79 | 78 | oveq2d | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( (  -us  ‘ 𝐴 )  +s  (  -us  ‘ (  -us  ‘ (  1s   /su  𝑛 ) ) ) )  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) ) | 
						
							| 80 | 73 76 79 | 3eqtrd | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  (  -us  ‘ ( 𝐴  -s  (  1s   /su  𝑛 ) ) )  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) ) | 
						
							| 81 | 80 | eqeq1d | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( (  -us  ‘ ( 𝐴  -s  (  1s   /su  𝑛 ) ) )  =  𝑦  ↔  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) )  =  𝑦 ) ) | 
						
							| 82 |  | eqcom | ⊢ ( ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) )  =  𝑦  ↔  𝑦  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) ) | 
						
							| 83 | 81 82 | bitrdi | ⊢ ( ( 𝐴  ∈   No   ∧  𝑛  ∈  ℕs )  →  ( (  -us  ‘ ( 𝐴  -s  (  1s   /su  𝑛 ) ) )  =  𝑦  ↔  𝑦  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 84 | 83 | rexbidva | ⊢ ( 𝐴  ∈   No   →  ( ∃ 𝑛  ∈  ℕs (  -us  ‘ ( 𝐴  -s  (  1s   /su  𝑛 ) ) )  =  𝑦  ↔  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 85 | 71 84 | bitrid | ⊢ ( 𝐴  ∈   No   →  ( ∃ 𝑧  ∈  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } (  -us  ‘ 𝑧 )  =  𝑦  ↔  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 86 | 59 85 | bitrd | ⊢ ( 𝐴  ∈   No   →  ( 𝑦  ∈  (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } )  ↔  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) ) ) | 
						
							| 87 | 86 | eqabdv | ⊢ ( 𝐴  ∈   No   →  (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } )  =  { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) } ) | 
						
							| 88 | 55 87 | oveq12d | ⊢ ( 𝐴  ∈   No   →  ( (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  |s  (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } ) )  =  ( { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) } ) ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) )  →  ( (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } )  |s  (  -us   “  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) } ) )  =  ( { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) } ) ) | 
						
							| 90 | 21 89 | eqtrd | ⊢ ( ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) )  →  (  -us  ‘ 𝐴 )  =  ( { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) } ) ) | 
						
							| 91 | 2 17 90 | jca32 | ⊢ ( ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) )  →  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  (  -us  ‘ 𝐴 )  ∧  (  -us  ‘ 𝐴 )  <s  𝑛 )  ∧  (  -us  ‘ 𝐴 )  =  ( { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) } ) ) ) ) | 
						
							| 92 |  | elreno | ⊢ ( 𝐴  ∈  ℝs  ↔  ( 𝐴  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  𝐴  ∧  𝐴  <s  𝑛 )  ∧  𝐴  =  ( { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑥  ∣  ∃ 𝑛  ∈  ℕs 𝑥  =  ( 𝐴  +s  (  1s   /su  𝑛 ) ) } ) ) ) ) | 
						
							| 93 |  | elreno | ⊢ ( (  -us  ‘ 𝐴 )  ∈  ℝs  ↔  ( (  -us  ‘ 𝐴 )  ∈   No   ∧  ( ∃ 𝑛  ∈  ℕs ( (  -us  ‘ 𝑛 )  <s  (  -us  ‘ 𝐴 )  ∧  (  -us  ‘ 𝐴 )  <s  𝑛 )  ∧  (  -us  ‘ 𝐴 )  =  ( { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  -s  (  1s   /su  𝑛 ) ) }  |s  { 𝑦  ∣  ∃ 𝑛  ∈  ℕs 𝑦  =  ( (  -us  ‘ 𝐴 )  +s  (  1s   /su  𝑛 ) ) } ) ) ) ) | 
						
							| 94 | 91 92 93 | 3imtr4i | ⊢ ( 𝐴  ∈  ℝs  →  (  -us  ‘ 𝐴 )  ∈  ℝs ) |