| Step |
Hyp |
Ref |
Expression |
| 1 |
|
negscl |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( -us ‘ 𝐴 ) ∈ No ) |
| 3 |
|
nnsno |
⊢ ( 𝑛 ∈ ℕs → 𝑛 ∈ No ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → 𝑛 ∈ No ) |
| 5 |
4
|
negscld |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ 𝑛 ) ∈ No ) |
| 6 |
|
simpl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → 𝐴 ∈ No ) |
| 7 |
5 6
|
sltnegd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ 𝑛 ) <s 𝐴 ↔ ( -us ‘ 𝐴 ) <s ( -us ‘ ( -us ‘ 𝑛 ) ) ) ) |
| 8 |
|
negnegs |
⊢ ( 𝑛 ∈ No → ( -us ‘ ( -us ‘ 𝑛 ) ) = 𝑛 ) |
| 9 |
4 8
|
syl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( -us ‘ 𝑛 ) ) = 𝑛 ) |
| 10 |
9
|
breq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ 𝐴 ) <s ( -us ‘ ( -us ‘ 𝑛 ) ) ↔ ( -us ‘ 𝐴 ) <s 𝑛 ) ) |
| 11 |
7 10
|
bitrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ 𝑛 ) <s 𝐴 ↔ ( -us ‘ 𝐴 ) <s 𝑛 ) ) |
| 12 |
6 4
|
sltnegd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( 𝐴 <s 𝑛 ↔ ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ) ) |
| 13 |
11 12
|
anbi12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ↔ ( ( -us ‘ 𝐴 ) <s 𝑛 ∧ ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ) ) ) |
| 14 |
13
|
biancomd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ↔ ( ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ∧ ( -us ‘ 𝐴 ) <s 𝑛 ) ) ) |
| 15 |
14
|
rexbidva |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ↔ ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ∧ ( -us ‘ 𝐴 ) <s 𝑛 ) ) ) |
| 16 |
15
|
biimpa |
⊢ ( ( 𝐴 ∈ No ∧ ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ) → ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ∧ ( -us ‘ 𝐴 ) <s 𝑛 ) ) |
| 17 |
16
|
adantrr |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ∧ ( -us ‘ 𝐴 ) <s 𝑛 ) ) |
| 18 |
|
recut |
⊢ ( 𝐴 ∈ No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |
| 20 |
|
simprr |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) |
| 21 |
19 20
|
negsunif |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( -us ‘ 𝐴 ) = ( ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |s ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ) ) |
| 22 |
|
negsfn |
⊢ -us Fn No |
| 23 |
|
ssltss2 |
⊢ ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ⊆ No ) |
| 24 |
18 23
|
syl |
⊢ ( 𝐴 ∈ No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ⊆ No ) |
| 25 |
|
fvelimab |
⊢ ( ( -us Fn No ∧ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ⊆ No ) → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ) ) |
| 26 |
22 24 25
|
sylancr |
⊢ ( 𝐴 ∈ No → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ) ) |
| 27 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) ) |
| 28 |
27
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) ) |
| 29 |
28
|
rexab |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
| 30 |
|
rexcom4 |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑧 ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
| 31 |
|
ovex |
⊢ ( 𝐴 +s ( 1s /su 𝑛 ) ) ∈ V |
| 32 |
|
fveqeq2 |
⊢ ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( ( -us ‘ 𝑧 ) = 𝑦 ↔ ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ) ) |
| 33 |
31 32
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
| 34 |
33
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑧 ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
| 35 |
|
r19.41v |
⊢ ( ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
| 36 |
35
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
| 37 |
30 34 36
|
3bitr3ri |
⊢ ( ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
| 38 |
29 37
|
bitri |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
| 39 |
|
1sno |
⊢ 1s ∈ No |
| 40 |
39
|
a1i |
⊢ ( 𝑛 ∈ ℕs → 1s ∈ No ) |
| 41 |
|
nnne0s |
⊢ ( 𝑛 ∈ ℕs → 𝑛 ≠ 0s ) |
| 42 |
40 3 41
|
divscld |
⊢ ( 𝑛 ∈ ℕs → ( 1s /su 𝑛 ) ∈ No ) |
| 43 |
42
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( 1s /su 𝑛 ) ∈ No ) |
| 44 |
|
negsdi |
⊢ ( ( 𝐴 ∈ No ∧ ( 1s /su 𝑛 ) ∈ No ) → ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) |
| 45 |
43 44
|
syldan |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) |
| 46 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ 𝐴 ) ∈ No ) |
| 47 |
46 43
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) |
| 48 |
45 47
|
eqtr4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) ) |
| 49 |
48
|
eqeq1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) = 𝑦 ) ) |
| 50 |
|
eqcom |
⊢ ( ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) = 𝑦 ↔ 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) ) |
| 51 |
49 50
|
bitrdi |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) ) ) |
| 52 |
51
|
rexbidva |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) ) ) |
| 53 |
38 52
|
bitrid |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) ) ) |
| 54 |
26 53
|
bitrd |
⊢ ( 𝐴 ∈ No → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) ) ) |
| 55 |
54
|
eqabdv |
⊢ ( 𝐴 ∈ No → ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) = { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) } ) |
| 56 |
|
ssltss1 |
⊢ ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ⊆ No ) |
| 57 |
18 56
|
syl |
⊢ ( 𝐴 ∈ No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ⊆ No ) |
| 58 |
|
fvelimab |
⊢ ( ( -us Fn No ∧ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ⊆ No ) → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ) ) |
| 59 |
22 57 58
|
sylancr |
⊢ ( 𝐴 ∈ No → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ) ) |
| 60 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ↔ 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ) |
| 61 |
60
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ) |
| 62 |
61
|
rexab |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
| 63 |
|
rexcom4 |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑧 ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
| 64 |
|
ovex |
⊢ ( 𝐴 -s ( 1s /su 𝑛 ) ) ∈ V |
| 65 |
|
fveqeq2 |
⊢ ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( ( -us ‘ 𝑧 ) = 𝑦 ↔ ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ) ) |
| 66 |
64 65
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
| 67 |
66
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑧 ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
| 68 |
|
r19.41v |
⊢ ( ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
| 69 |
68
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
| 70 |
63 67 69
|
3bitr3ri |
⊢ ( ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
| 71 |
62 70
|
bitri |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
| 72 |
6 43
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( 𝐴 -s ( 1s /su 𝑛 ) ) = ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) |
| 73 |
72
|
fveq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = ( -us ‘ ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) ) |
| 74 |
43
|
negscld |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( 1s /su 𝑛 ) ) ∈ No ) |
| 75 |
|
negsdi |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ ( 1s /su 𝑛 ) ) ∈ No ) → ( -us ‘ ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) ) ) |
| 76 |
74 75
|
syldan |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) ) ) |
| 77 |
|
negnegs |
⊢ ( ( 1s /su 𝑛 ) ∈ No → ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) = ( 1s /su 𝑛 ) ) |
| 78 |
43 77
|
syl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) = ( 1s /su 𝑛 ) ) |
| 79 |
78
|
oveq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) ) = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) |
| 80 |
73 76 79
|
3eqtrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) |
| 81 |
80
|
eqeq1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) = 𝑦 ) ) |
| 82 |
|
eqcom |
⊢ ( ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) = 𝑦 ↔ 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) |
| 83 |
81 82
|
bitrdi |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) ) |
| 84 |
83
|
rexbidva |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) ) |
| 85 |
71 84
|
bitrid |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) ) |
| 86 |
59 85
|
bitrd |
⊢ ( 𝐴 ∈ No → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) ) |
| 87 |
86
|
eqabdv |
⊢ ( 𝐴 ∈ No → ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) = { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) } ) |
| 88 |
55 87
|
oveq12d |
⊢ ( 𝐴 ∈ No → ( ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |s ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) } ) ) |
| 89 |
88
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |s ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) } ) ) |
| 90 |
21 89
|
eqtrd |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( -us ‘ 𝐴 ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) } ) ) |
| 91 |
2 17 90
|
jca32 |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ∧ ( -us ‘ 𝐴 ) <s 𝑛 ) ∧ ( -us ‘ 𝐴 ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) } ) ) ) ) |
| 92 |
|
elreno |
⊢ ( 𝐴 ∈ ℝs ↔ ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) ) |
| 93 |
|
elreno |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℝs ↔ ( ( -us ‘ 𝐴 ) ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ∧ ( -us ‘ 𝐴 ) <s 𝑛 ) ∧ ( -us ‘ 𝐴 ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) } ) ) ) ) |
| 94 |
91 92 93
|
3imtr4i |
⊢ ( 𝐴 ∈ ℝs → ( -us ‘ 𝐴 ) ∈ ℝs ) |