Step |
Hyp |
Ref |
Expression |
1 |
|
negscl |
⊢ ( 𝐴 ∈ No → ( -us ‘ 𝐴 ) ∈ No ) |
2 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( -us ‘ 𝐴 ) ∈ No ) |
3 |
|
nnsno |
⊢ ( 𝑛 ∈ ℕs → 𝑛 ∈ No ) |
4 |
3
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → 𝑛 ∈ No ) |
5 |
4
|
negscld |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ 𝑛 ) ∈ No ) |
6 |
|
simpl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → 𝐴 ∈ No ) |
7 |
5 6
|
sltnegd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ 𝑛 ) <s 𝐴 ↔ ( -us ‘ 𝐴 ) <s ( -us ‘ ( -us ‘ 𝑛 ) ) ) ) |
8 |
|
negnegs |
⊢ ( 𝑛 ∈ No → ( -us ‘ ( -us ‘ 𝑛 ) ) = 𝑛 ) |
9 |
4 8
|
syl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( -us ‘ 𝑛 ) ) = 𝑛 ) |
10 |
9
|
breq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ 𝐴 ) <s ( -us ‘ ( -us ‘ 𝑛 ) ) ↔ ( -us ‘ 𝐴 ) <s 𝑛 ) ) |
11 |
7 10
|
bitrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ 𝑛 ) <s 𝐴 ↔ ( -us ‘ 𝐴 ) <s 𝑛 ) ) |
12 |
6 4
|
sltnegd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( 𝐴 <s 𝑛 ↔ ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ) ) |
13 |
11 12
|
anbi12d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ↔ ( ( -us ‘ 𝐴 ) <s 𝑛 ∧ ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ) ) ) |
14 |
13
|
biancomd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ↔ ( ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ∧ ( -us ‘ 𝐴 ) <s 𝑛 ) ) ) |
15 |
14
|
rexbidva |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ↔ ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ∧ ( -us ‘ 𝐴 ) <s 𝑛 ) ) ) |
16 |
15
|
biimpa |
⊢ ( ( 𝐴 ∈ No ∧ ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ) → ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ∧ ( -us ‘ 𝐴 ) <s 𝑛 ) ) |
17 |
16
|
adantrr |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ∧ ( -us ‘ 𝐴 ) <s 𝑛 ) ) |
18 |
|
recut |
⊢ ( 𝐴 ∈ No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |
19 |
18
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |
20 |
|
simprr |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) |
21 |
19 20
|
negsunif |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( -us ‘ 𝐴 ) = ( ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |s ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ) ) |
22 |
|
negsfn |
⊢ -us Fn No |
23 |
|
ssltss2 |
⊢ ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ⊆ No ) |
24 |
18 23
|
syl |
⊢ ( 𝐴 ∈ No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ⊆ No ) |
25 |
|
fvelimab |
⊢ ( ( -us Fn No ∧ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ⊆ No ) → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ) ) |
26 |
22 24 25
|
sylancr |
⊢ ( 𝐴 ∈ No → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ) ) |
27 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ) ) |
29 |
28
|
rexab |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
30 |
|
rexcom4 |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑧 ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
31 |
|
ovex |
⊢ ( 𝐴 +s ( 1s /su 𝑛 ) ) ∈ V |
32 |
|
fveqeq2 |
⊢ ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) → ( ( -us ‘ 𝑧 ) = 𝑦 ↔ ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ) ) |
33 |
31 32
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
34 |
33
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑧 ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
35 |
|
r19.41v |
⊢ ( ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
36 |
35
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
37 |
30 34 36
|
3bitr3ri |
⊢ ( ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 +s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
38 |
29 37
|
bitri |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
39 |
|
1sno |
⊢ 1s ∈ No |
40 |
39
|
a1i |
⊢ ( 𝑛 ∈ ℕs → 1s ∈ No ) |
41 |
|
nnne0s |
⊢ ( 𝑛 ∈ ℕs → 𝑛 ≠ 0s ) |
42 |
40 3 41
|
divscld |
⊢ ( 𝑛 ∈ ℕs → ( 1s /su 𝑛 ) ∈ No ) |
43 |
42
|
adantl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( 1s /su 𝑛 ) ∈ No ) |
44 |
|
negsdi |
⊢ ( ( 𝐴 ∈ No ∧ ( 1s /su 𝑛 ) ∈ No ) → ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) |
45 |
43 44
|
syldan |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) |
46 |
1
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ 𝐴 ) ∈ No ) |
47 |
46 43
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) |
48 |
45 47
|
eqtr4d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) ) |
49 |
48
|
eqeq1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) = 𝑦 ) ) |
50 |
|
eqcom |
⊢ ( ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) = 𝑦 ↔ 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) ) |
51 |
49 50
|
bitrdi |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) ) ) |
52 |
51
|
rexbidva |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 +s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) ) ) |
53 |
38 52
|
bitrid |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) ) ) |
54 |
26 53
|
bitrd |
⊢ ( 𝐴 ∈ No → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) ) ) |
55 |
54
|
eqabdv |
⊢ ( 𝐴 ∈ No → ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) = { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) } ) |
56 |
|
ssltss1 |
⊢ ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } <<s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ⊆ No ) |
57 |
18 56
|
syl |
⊢ ( 𝐴 ∈ No → { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ⊆ No ) |
58 |
|
fvelimab |
⊢ ( ( -us Fn No ∧ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ⊆ No ) → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ) ) |
59 |
22 57 58
|
sylancr |
⊢ ( 𝐴 ∈ No → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ) ) |
60 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ↔ 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ) |
61 |
60
|
rexbidv |
⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ↔ ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ) ) |
62 |
61
|
rexab |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
63 |
|
rexcom4 |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑧 ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
64 |
|
ovex |
⊢ ( 𝐴 -s ( 1s /su 𝑛 ) ) ∈ V |
65 |
|
fveqeq2 |
⊢ ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) → ( ( -us ‘ 𝑧 ) = 𝑦 ↔ ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ) ) |
66 |
64 65
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
67 |
66
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ℕs ∃ 𝑧 ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
68 |
|
r19.41v |
⊢ ( ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
69 |
68
|
exbii |
⊢ ( ∃ 𝑧 ∃ 𝑛 ∈ ℕs ( 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ) |
70 |
63 67 69
|
3bitr3ri |
⊢ ( ∃ 𝑧 ( ∃ 𝑛 ∈ ℕs 𝑧 = ( 𝐴 -s ( 1s /su 𝑛 ) ) ∧ ( -us ‘ 𝑧 ) = 𝑦 ) ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
71 |
62 70
|
bitri |
⊢ ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ) |
72 |
6 43
|
subsvald |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( 𝐴 -s ( 1s /su 𝑛 ) ) = ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) |
73 |
72
|
fveq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = ( -us ‘ ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) ) |
74 |
43
|
negscld |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( 1s /su 𝑛 ) ) ∈ No ) |
75 |
|
negsdi |
⊢ ( ( 𝐴 ∈ No ∧ ( -us ‘ ( 1s /su 𝑛 ) ) ∈ No ) → ( -us ‘ ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) ) ) |
76 |
74 75
|
syldan |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 +s ( -us ‘ ( 1s /su 𝑛 ) ) ) ) = ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) ) ) |
77 |
|
negnegs |
⊢ ( ( 1s /su 𝑛 ) ∈ No → ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) = ( 1s /su 𝑛 ) ) |
78 |
43 77
|
syl |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) = ( 1s /su 𝑛 ) ) |
79 |
78
|
oveq2d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ 𝐴 ) +s ( -us ‘ ( -us ‘ ( 1s /su 𝑛 ) ) ) ) = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) |
80 |
73 76 79
|
3eqtrd |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) |
81 |
80
|
eqeq1d |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) = 𝑦 ) ) |
82 |
|
eqcom |
⊢ ( ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) = 𝑦 ↔ 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) |
83 |
81 82
|
bitrdi |
⊢ ( ( 𝐴 ∈ No ∧ 𝑛 ∈ ℕs ) → ( ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) ) |
84 |
83
|
rexbidva |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑛 ∈ ℕs ( -us ‘ ( 𝐴 -s ( 1s /su 𝑛 ) ) ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) ) |
85 |
71 84
|
bitrid |
⊢ ( 𝐴 ∈ No → ( ∃ 𝑧 ∈ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ( -us ‘ 𝑧 ) = 𝑦 ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) ) |
86 |
59 85
|
bitrd |
⊢ ( 𝐴 ∈ No → ( 𝑦 ∈ ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ↔ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) ) ) |
87 |
86
|
eqabdv |
⊢ ( 𝐴 ∈ No → ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) = { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) } ) |
88 |
55 87
|
oveq12d |
⊢ ( 𝐴 ∈ No → ( ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |s ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) } ) ) |
89 |
88
|
adantr |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) |s ( -us “ { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } ) ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) } ) ) |
90 |
21 89
|
eqtrd |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( -us ‘ 𝐴 ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) } ) ) |
91 |
2 17 90
|
jca32 |
⊢ ( ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) → ( ( -us ‘ 𝐴 ) ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ∧ ( -us ‘ 𝐴 ) <s 𝑛 ) ∧ ( -us ‘ 𝐴 ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) } ) ) ) ) |
92 |
|
elreno |
⊢ ( 𝐴 ∈ ℝs ↔ ( 𝐴 ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s 𝐴 ∧ 𝐴 <s 𝑛 ) ∧ 𝐴 = ( { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 -s ( 1s /su 𝑛 ) ) } |s { 𝑥 ∣ ∃ 𝑛 ∈ ℕs 𝑥 = ( 𝐴 +s ( 1s /su 𝑛 ) ) } ) ) ) ) |
93 |
|
elreno |
⊢ ( ( -us ‘ 𝐴 ) ∈ ℝs ↔ ( ( -us ‘ 𝐴 ) ∈ No ∧ ( ∃ 𝑛 ∈ ℕs ( ( -us ‘ 𝑛 ) <s ( -us ‘ 𝐴 ) ∧ ( -us ‘ 𝐴 ) <s 𝑛 ) ∧ ( -us ‘ 𝐴 ) = ( { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) -s ( 1s /su 𝑛 ) ) } |s { 𝑦 ∣ ∃ 𝑛 ∈ ℕs 𝑦 = ( ( -us ‘ 𝐴 ) +s ( 1s /su 𝑛 ) ) } ) ) ) ) |
94 |
91 92 93
|
3imtr4i |
⊢ ( 𝐴 ∈ ℝs → ( -us ‘ 𝐴 ) ∈ ℝs ) |