Metamath Proof Explorer


Definition df-riota

Description: Define restricted description binder. In case there is no unique x such that ( x e. A /\ ph ) holds, it evaluates to the empty set. See also comments for df-iota . (Contributed by NM, 15-Sep-2011) (Revised by Mario Carneiro, 15-Oct-2016) (Revised by NM, 2-Sep-2018)

Ref Expression
Assertion df-riota ιxA|φ=ιx|xAφ

Detailed syntax breakdown

Step Hyp Ref Expression
0 vx setvarx
1 cA classA
2 wph wffφ
3 2 0 1 crio classιxA|φ
4 0 cv setvarx
5 4 1 wcel wffxA
6 5 2 wa wffxAφ
7 6 0 cio classιx|xAφ
8 3 7 wceq wffιxA|φ=ιx|xAφ