Metamath Proof Explorer


Definition df-rnghomo

Description: Define the set of non-unital ring homomorphisms from r to s . (Contributed by AV, 20-Feb-2020)

Ref Expression
Assertion df-rnghomo RngHomo = r Rng , s Rng Base r / v Base s / w f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y

Detailed syntax breakdown

Step Hyp Ref Expression
0 crngh class RngHomo
1 vr setvar r
2 crng class Rng
3 vs setvar s
4 cbs class Base
5 1 cv setvar r
6 5 4 cfv class Base r
7 vv setvar v
8 3 cv setvar s
9 8 4 cfv class Base s
10 vw setvar w
11 vf setvar f
12 10 cv setvar w
13 cmap class 𝑚
14 7 cv setvar v
15 12 14 13 co class w v
16 vx setvar x
17 vy setvar y
18 11 cv setvar f
19 16 cv setvar x
20 cplusg class + 𝑔
21 5 20 cfv class + r
22 17 cv setvar y
23 19 22 21 co class x + r y
24 23 18 cfv class f x + r y
25 19 18 cfv class f x
26 8 20 cfv class + s
27 22 18 cfv class f y
28 25 27 26 co class f x + s f y
29 24 28 wceq wff f x + r y = f x + s f y
30 cmulr class 𝑟
31 5 30 cfv class r
32 19 22 31 co class x r y
33 32 18 cfv class f x r y
34 8 30 cfv class s
35 25 27 34 co class f x s f y
36 33 35 wceq wff f x r y = f x s f y
37 29 36 wa wff f x + r y = f x + s f y f x r y = f x s f y
38 37 17 14 wral wff y v f x + r y = f x + s f y f x r y = f x s f y
39 38 16 14 wral wff x v y v f x + r y = f x + s f y f x r y = f x s f y
40 39 11 15 crab class f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y
41 10 9 40 csb class Base s / w f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y
42 7 6 41 csb class Base r / v Base s / w f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y
43 1 3 2 2 42 cmpo class r Rng , s Rng Base r / v Base s / w f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y
44 0 43 wceq wff RngHomo = r Rng , s Rng Base r / v Base s / w f w v | x v y v f x + r y = f x + s f y f x r y = f x s f y