Metamath Proof Explorer


Definition df-rnghomo

Description: Define the set of non-unital ring homomorphisms from r to s . (Contributed by AV, 20-Feb-2020)

Ref Expression
Assertion df-rnghomo RngHomo = ( 𝑟 ∈ Rng , 𝑠 ∈ Rng ↦ ( Base ‘ 𝑟 ) / 𝑣 ( Base ‘ 𝑠 ) / 𝑤 { 𝑓 ∈ ( 𝑤m 𝑣 ) ∣ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) } )

Detailed syntax breakdown

Step Hyp Ref Expression
0 crngh RngHomo
1 vr 𝑟
2 crng Rng
3 vs 𝑠
4 cbs Base
5 1 cv 𝑟
6 5 4 cfv ( Base ‘ 𝑟 )
7 vv 𝑣
8 3 cv 𝑠
9 8 4 cfv ( Base ‘ 𝑠 )
10 vw 𝑤
11 vf 𝑓
12 10 cv 𝑤
13 cmap m
14 7 cv 𝑣
15 12 14 13 co ( 𝑤m 𝑣 )
16 vx 𝑥
17 vy 𝑦
18 11 cv 𝑓
19 16 cv 𝑥
20 cplusg +g
21 5 20 cfv ( +g𝑟 )
22 17 cv 𝑦
23 19 22 21 co ( 𝑥 ( +g𝑟 ) 𝑦 )
24 23 18 cfv ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) )
25 19 18 cfv ( 𝑓𝑥 )
26 8 20 cfv ( +g𝑠 )
27 22 18 cfv ( 𝑓𝑦 )
28 25 27 26 co ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) )
29 24 28 wceq ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) )
30 cmulr .r
31 5 30 cfv ( .r𝑟 )
32 19 22 31 co ( 𝑥 ( .r𝑟 ) 𝑦 )
33 32 18 cfv ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) )
34 8 30 cfv ( .r𝑠 )
35 25 27 34 co ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) )
36 33 35 wceq ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) )
37 29 36 wa ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) )
38 37 17 14 wral 𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) )
39 38 16 14 wral 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) )
40 39 11 15 crab { 𝑓 ∈ ( 𝑤m 𝑣 ) ∣ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) }
41 10 9 40 csb ( Base ‘ 𝑠 ) / 𝑤 { 𝑓 ∈ ( 𝑤m 𝑣 ) ∣ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) }
42 7 6 41 csb ( Base ‘ 𝑟 ) / 𝑣 ( Base ‘ 𝑠 ) / 𝑤 { 𝑓 ∈ ( 𝑤m 𝑣 ) ∣ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) }
43 1 3 2 2 42 cmpo ( 𝑟 ∈ Rng , 𝑠 ∈ Rng ↦ ( Base ‘ 𝑟 ) / 𝑣 ( Base ‘ 𝑠 ) / 𝑤 { 𝑓 ∈ ( 𝑤m 𝑣 ) ∣ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) } )
44 0 43 wceq RngHomo = ( 𝑟 ∈ Rng , 𝑠 ∈ Rng ↦ ( Base ‘ 𝑟 ) / 𝑣 ( Base ‘ 𝑠 ) / 𝑤 { 𝑓 ∈ ( 𝑤m 𝑣 ) ∣ ∀ 𝑥𝑣𝑦𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( +g𝑠 ) ( 𝑓𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r𝑟 ) 𝑦 ) ) = ( ( 𝑓𝑥 ) ( .r𝑠 ) ( 𝑓𝑦 ) ) ) } )