Step |
Hyp |
Ref |
Expression |
0 |
|
crngh |
⊢ RngHomo |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
crng |
⊢ Rng |
3 |
|
vs |
⊢ 𝑠 |
4 |
|
cbs |
⊢ Base |
5 |
1
|
cv |
⊢ 𝑟 |
6 |
5 4
|
cfv |
⊢ ( Base ‘ 𝑟 ) |
7 |
|
vv |
⊢ 𝑣 |
8 |
3
|
cv |
⊢ 𝑠 |
9 |
8 4
|
cfv |
⊢ ( Base ‘ 𝑠 ) |
10 |
|
vw |
⊢ 𝑤 |
11 |
|
vf |
⊢ 𝑓 |
12 |
10
|
cv |
⊢ 𝑤 |
13 |
|
cmap |
⊢ ↑m |
14 |
7
|
cv |
⊢ 𝑣 |
15 |
12 14 13
|
co |
⊢ ( 𝑤 ↑m 𝑣 ) |
16 |
|
vx |
⊢ 𝑥 |
17 |
|
vy |
⊢ 𝑦 |
18 |
11
|
cv |
⊢ 𝑓 |
19 |
16
|
cv |
⊢ 𝑥 |
20 |
|
cplusg |
⊢ +g |
21 |
5 20
|
cfv |
⊢ ( +g ‘ 𝑟 ) |
22 |
17
|
cv |
⊢ 𝑦 |
23 |
19 22 21
|
co |
⊢ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) |
24 |
23 18
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) |
25 |
19 18
|
cfv |
⊢ ( 𝑓 ‘ 𝑥 ) |
26 |
8 20
|
cfv |
⊢ ( +g ‘ 𝑠 ) |
27 |
22 18
|
cfv |
⊢ ( 𝑓 ‘ 𝑦 ) |
28 |
25 27 26
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
29 |
24 28
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
30 |
|
cmulr |
⊢ .r |
31 |
5 30
|
cfv |
⊢ ( .r ‘ 𝑟 ) |
32 |
19 22 31
|
co |
⊢ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) |
33 |
32 18
|
cfv |
⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) |
34 |
8 30
|
cfv |
⊢ ( .r ‘ 𝑠 ) |
35 |
25 27 34
|
co |
⊢ ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
36 |
33 35
|
wceq |
⊢ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) |
37 |
29 36
|
wa |
⊢ ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) |
38 |
37 17 14
|
wral |
⊢ ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) |
39 |
38 16 14
|
wral |
⊢ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) |
40 |
39 11 15
|
crab |
⊢ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
41 |
10 9 40
|
csb |
⊢ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
42 |
7 6 41
|
csb |
⊢ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } |
43 |
1 3 2 2 42
|
cmpo |
⊢ ( 𝑟 ∈ Rng , 𝑠 ∈ Rng ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |
44 |
0 43
|
wceq |
⊢ RngHomo = ( 𝑟 ∈ Rng , 𝑠 ∈ Rng ↦ ⦋ ( Base ‘ 𝑟 ) / 𝑣 ⦌ ⦋ ( Base ‘ 𝑠 ) / 𝑤 ⦌ { 𝑓 ∈ ( 𝑤 ↑m 𝑣 ) ∣ ∀ 𝑥 ∈ 𝑣 ∀ 𝑦 ∈ 𝑣 ( ( 𝑓 ‘ ( 𝑥 ( +g ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( +g ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ∧ ( 𝑓 ‘ ( 𝑥 ( .r ‘ 𝑟 ) 𝑦 ) ) = ( ( 𝑓 ‘ 𝑥 ) ( .r ‘ 𝑠 ) ( 𝑓 ‘ 𝑦 ) ) ) } ) |