Step |
Hyp |
Ref |
Expression |
0 |
|
crngh |
|- RngHomo |
1 |
|
vr |
|- r |
2 |
|
crng |
|- Rng |
3 |
|
vs |
|- s |
4 |
|
cbs |
|- Base |
5 |
1
|
cv |
|- r |
6 |
5 4
|
cfv |
|- ( Base ` r ) |
7 |
|
vv |
|- v |
8 |
3
|
cv |
|- s |
9 |
8 4
|
cfv |
|- ( Base ` s ) |
10 |
|
vw |
|- w |
11 |
|
vf |
|- f |
12 |
10
|
cv |
|- w |
13 |
|
cmap |
|- ^m |
14 |
7
|
cv |
|- v |
15 |
12 14 13
|
co |
|- ( w ^m v ) |
16 |
|
vx |
|- x |
17 |
|
vy |
|- y |
18 |
11
|
cv |
|- f |
19 |
16
|
cv |
|- x |
20 |
|
cplusg |
|- +g |
21 |
5 20
|
cfv |
|- ( +g ` r ) |
22 |
17
|
cv |
|- y |
23 |
19 22 21
|
co |
|- ( x ( +g ` r ) y ) |
24 |
23 18
|
cfv |
|- ( f ` ( x ( +g ` r ) y ) ) |
25 |
19 18
|
cfv |
|- ( f ` x ) |
26 |
8 20
|
cfv |
|- ( +g ` s ) |
27 |
22 18
|
cfv |
|- ( f ` y ) |
28 |
25 27 26
|
co |
|- ( ( f ` x ) ( +g ` s ) ( f ` y ) ) |
29 |
24 28
|
wceq |
|- ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) |
30 |
|
cmulr |
|- .r |
31 |
5 30
|
cfv |
|- ( .r ` r ) |
32 |
19 22 31
|
co |
|- ( x ( .r ` r ) y ) |
33 |
32 18
|
cfv |
|- ( f ` ( x ( .r ` r ) y ) ) |
34 |
8 30
|
cfv |
|- ( .r ` s ) |
35 |
25 27 34
|
co |
|- ( ( f ` x ) ( .r ` s ) ( f ` y ) ) |
36 |
33 35
|
wceq |
|- ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) |
37 |
29 36
|
wa |
|- ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) |
38 |
37 17 14
|
wral |
|- A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) |
39 |
38 16 14
|
wral |
|- A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) |
40 |
39 11 15
|
crab |
|- { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } |
41 |
10 9 40
|
csb |
|- [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } |
42 |
7 6 41
|
csb |
|- [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } |
43 |
1 3 2 2 42
|
cmpo |
|- ( r e. Rng , s e. Rng |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } ) |
44 |
0 43
|
wceq |
|- RngHomo = ( r e. Rng , s e. Rng |-> [_ ( Base ` r ) / v ]_ [_ ( Base ` s ) / w ]_ { f e. ( w ^m v ) | A. x e. v A. y e. v ( ( f ` ( x ( +g ` r ) y ) ) = ( ( f ` x ) ( +g ` s ) ( f ` y ) ) /\ ( f ` ( x ( .r ` r ) y ) ) = ( ( f ` x ) ( .r ` s ) ( f ` y ) ) ) } ) |