Metamath Proof Explorer


Definition df-sat

Description: Define the satisfaction predicate. This recursive construction builds up a function over wff codes (see satff ) and simultaneously defines the set of assignments to all variables from M that makes the coded wff true in the model M , where e. is interpreted as the binary relation E on M .

The interpretation of the statement S e. ( ( ( M Sat E )n )U ) is that for the model <. M , E >. , S :om --> M is a valuation of the variables (v0 = ( S(/) ) , v_1 = ( S1o ) , etc.) and U is a code for a wff using e. , -/\ , A. that is true under the assignment S . The function is defined by finite recursion; ( ( M Sat E )n ) only operates on wffs of depth at most n e.om , and ( ( M Sat E )om ) = U_ n e. _om ( ( M Sat E )n ) operates on all wffs.

The coding scheme for the wffs is defined so that

(Contributed by Mario Carneiro, 14-Jul-2013)

Ref Expression
Assertion df-sat Sat=mV,eVrecfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduxy|iωjωx=i𝑔jy=amω|aieajsucω

Detailed syntax breakdown

Step Hyp Ref Expression
0 csat classSat
1 vm setvarm
2 cvv classV
3 ve setvare
4 vf setvarf
5 4 cv setvarf
6 vx setvarx
7 vy setvary
8 vu setvaru
9 vv setvarv
10 6 cv setvarx
11 c1st class1st
12 8 cv setvaru
13 12 11 cfv class1stu
14 cgna class𝑔
15 9 cv setvarv
16 15 11 cfv class1stv
17 13 16 14 co class1stu𝑔1stv
18 10 17 wceq wffx=1stu𝑔1stv
19 7 cv setvary
20 1 cv setvarm
21 cmap class𝑚
22 com classω
23 20 22 21 co classmω
24 c2nd class2nd
25 12 24 cfv class2ndu
26 15 24 cfv class2ndv
27 25 26 cin class2ndu2ndv
28 23 27 cdif classmω2ndu2ndv
29 19 28 wceq wffy=mω2ndu2ndv
30 18 29 wa wffx=1stu𝑔1stvy=mω2ndu2ndv
31 30 9 5 wrex wffvfx=1stu𝑔1stvy=mω2ndu2ndv
32 vi setvari
33 32 cv setvari
34 13 33 cgol class𝑔i1stu
35 10 34 wceq wffx=𝑔i1stu
36 va setvara
37 vz setvarz
38 37 cv setvarz
39 33 38 cop classiz
40 39 csn classiz
41 36 cv setvara
42 33 csn classi
43 22 42 cdif classωi
44 41 43 cres classaωi
45 40 44 cun classizaωi
46 45 25 wcel wffizaωi2ndu
47 46 37 20 wral wffzmizaωi2ndu
48 47 36 23 crab classamω|zmizaωi2ndu
49 19 48 wceq wffy=amω|zmizaωi2ndu
50 35 49 wa wffx=𝑔i1stuy=amω|zmizaωi2ndu
51 50 32 22 wrex wffiωx=𝑔i1stuy=amω|zmizaωi2ndu
52 31 51 wo wffvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2ndu
53 52 8 5 wrex wffufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2ndu
54 53 6 7 copab classxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2ndu
55 5 54 cun classfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2ndu
56 4 2 55 cmpt classfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2ndu
57 vj setvarj
58 cgoe class𝑔
59 57 cv setvarj
60 33 59 58 co classi𝑔j
61 10 60 wceq wffx=i𝑔j
62 33 41 cfv classai
63 3 cv setvare
64 59 41 cfv classaj
65 62 64 63 wbr wffaieaj
66 65 36 23 crab classamω|aieaj
67 19 66 wceq wffy=amω|aieaj
68 61 67 wa wffx=i𝑔jy=amω|aieaj
69 68 57 22 wrex wffjωx=i𝑔jy=amω|aieaj
70 69 32 22 wrex wffiωjωx=i𝑔jy=amω|aieaj
71 70 6 7 copab classxy|iωjωx=i𝑔jy=amω|aieaj
72 56 71 crdg classrecfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduxy|iωjωx=i𝑔jy=amω|aieaj
73 22 csuc classsucω
74 72 73 cres classrecfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduxy|iωjωx=i𝑔jy=amω|aieajsucω
75 1 3 2 2 74 cmpo classmV,eVrecfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduxy|iωjωx=i𝑔jy=amω|aieajsucω
76 0 75 wceq wffSat=mV,eVrecfVfxy|ufvfx=1stu𝑔1stvy=mω2ndu2ndviωx=𝑔i1stuy=amω|zmizaωi2nduxy|iωjωx=i𝑔jy=amω|aieajsucω