Metamath Proof Explorer


Definition df-sgns

Description: Signum function for a structure. See also df-sgn for the version for extended reals. (Contributed by Thierry Arnoux, 10-Sep-2018)

Ref Expression
Assertion df-sgns sgns=rVxBaserifx=0r0if0r<rx11

Detailed syntax breakdown

Step Hyp Ref Expression
0 csgns classsgns
1 vr setvarr
2 cvv classV
3 vx setvarx
4 cbs classBase
5 1 cv setvarr
6 5 4 cfv classBaser
7 3 cv setvarx
8 c0g class0𝑔
9 5 8 cfv class0r
10 7 9 wceq wffx=0r
11 cc0 class0
12 cplt classlt
13 5 12 cfv class<r
14 9 7 13 wbr wff0r<rx
15 c1 class1
16 15 cneg class-1
17 14 15 16 cif classif0r<rx11
18 10 11 17 cif classifx=0r0if0r<rx11
19 3 6 18 cmpt classxBaserifx=0r0if0r<rx11
20 1 2 19 cmpt classrVxBaserifx=0r0if0r<rx11
21 0 20 wceq wffsgns=rVxBaserifx=0r0if0r<rx11