Description: Asemigroup is a set equipped with an everywhere defined internal
operation (so, a magma, see df-mgm ), whose operation is associative.
Definition in section II.1 of Bruck p. 23, or of an "associative
magma" in definition 5 of BourbakiAlg1 p. 4 . (Contributed by FL, 2-Nov-2009)(Revised by AV, 6-Jan-2020)
Could not format assertion : No typesetting found for |- Smgrp = { g e. Mgm | [. ( Base ` g ) / b ]. [. ( +g ` g ) / o ]. A. x e. b A. y e. b A. z e. b ( ( x o y ) o z ) = ( x o ( y o z ) ) } with typecode |-
Could not format Smgrp = { g e. Mgm | [. ( Base ` g ) / b ]. [. ( +g ` g ) / o ]. A. x e. b A. y e. b A. z e. b ( ( x o y ) o z ) = ( x o ( y o z ) ) } : No typesetting found for wff Smgrp = { g e. Mgm | [. ( Base ` g ) / b ]. [. ( +g ` g ) / o ]. A. x e. b A. y e. b A. z e. b ( ( x o y ) o z ) = ( x o ( y o z ) ) } with typecode wff