Metamath Proof Explorer


Definition df-sgrp

Description: Asemigroup is a set equipped with an everywhere defined internal operation (so, a magma, see df-mgm ), whose operation is associative. Definition in section II.1 of Bruck p. 23, or of an "associative magma" in definition 5 of BourbakiAlg1 p. 4 . (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)

Ref Expression
Assertion df-sgrp Could not format assertion : No typesetting found for |- Smgrp = { g e. Mgm | [. ( Base ` g ) / b ]. [. ( +g ` g ) / o ]. A. x e. b A. y e. b A. z e. b ( ( x o y ) o z ) = ( x o ( y o z ) ) } with typecode |-

Detailed syntax breakdown

Step Hyp Ref Expression
0 csgrp Could not format Smgrp : No typesetting found for class Smgrp with typecode class
1 vg setvarg
2 cmgm classMgm
3 cbs classBase
4 1 cv setvarg
5 4 3 cfv classBaseg
6 vb setvarb
7 cplusg class+𝑔
8 4 7 cfv class+g
9 vo setvaro
10 vx setvarx
11 6 cv setvarb
12 vy setvary
13 vz setvarz
14 10 cv setvarx
15 9 cv setvaro
16 12 cv setvary
17 14 16 15 co classxoy
18 13 cv setvarz
19 17 18 15 co classxoyoz
20 16 18 15 co classyoz
21 14 20 15 co classxoyoz
22 19 21 wceq wffxoyoz=xoyoz
23 22 13 11 wral wffzbxoyoz=xoyoz
24 23 12 11 wral wffybzbxoyoz=xoyoz
25 24 10 11 wral wffxbybzbxoyoz=xoyoz
26 25 9 8 wsbc wff[˙+g/o]˙xbybzbxoyoz=xoyoz
27 26 6 5 wsbc wff[˙Baseg/b]˙[˙+g/o]˙xbybzbxoyoz=xoyoz
28 27 1 2 crab classgMgm|[˙Baseg/b]˙[˙+g/o]˙xbybzbxoyoz=xoyoz
29 0 28 wceq Could not format Smgrp = { g e. Mgm | [. ( Base ` g ) / b ]. [. ( +g ` g ) / o ]. A. x e. b A. y e. b A. z e. b ( ( x o y ) o z ) = ( x o ( y o z ) ) } : No typesetting found for wff Smgrp = { g e. Mgm | [. ( Base ` g ) / b ]. [. ( +g ` g ) / o ]. A. x e. b A. y e. b A. z e. b ( ( x o y ) o z ) = ( x o ( y o z ) ) } with typecode wff