Metamath Proof Explorer


Definition df-srng

Description: Define class of all star rings. A star ring is a ring with an involution (conjugation) function. Involution (unlike say the ring zero) is not unique and therefore must be added as a new component to the ring. For example, two possible involutions for complex numbers are the identity function and complex conjugation. Definition of involution in Holland95 p. 204. (Contributed by NM, 22-Sep-2011) (Revised by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion df-srng *-Ring=f|[˙𝑟𝑓f/i]˙ifRingHomopprfi=i-1

Detailed syntax breakdown

Step Hyp Ref Expression
0 csr class*-Ring
1 vf setvarf
2 cstf class𝑟𝑓
3 1 cv setvarf
4 3 2 cfv class𝑟𝑓f
5 vi setvari
6 5 cv setvari
7 crh classRingHom
8 coppr classoppr
9 3 8 cfv classopprf
10 3 9 7 co classfRingHomopprf
11 6 10 wcel wffifRingHomopprf
12 6 ccnv classi-1
13 6 12 wceq wffi=i-1
14 11 13 wa wffifRingHomopprfi=i-1
15 14 5 4 wsbc wff[˙𝑟𝑓f/i]˙ifRingHomopprfi=i-1
16 15 1 cab classf|[˙𝑟𝑓f/i]˙ifRingHomopprfi=i-1
17 0 16 wceq wff*-Ring=f|[˙𝑟𝑓f/i]˙ifRingHomopprfi=i-1