Metamath Proof Explorer


Definition df-toplnd

Description: A topology isLindelöf iff every open cover has a countable subcover. (Contributed by Stefan O'Rear, 8-Jan-2015)

Ref Expression
Assertion df-toplnd TopLnd=xTop|y𝒫xx=yz𝒫xzωx=z

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctoplnd classTopLnd
1 vx setvarx
2 ctop classTop
3 vy setvary
4 1 cv setvarx
5 4 cpw class𝒫x
6 4 cuni classx
7 3 cv setvary
8 7 cuni classy
9 6 8 wceq wffx=y
10 vz setvarz
11 10 cv setvarz
12 cdom class
13 com classω
14 11 13 12 wbr wffzω
15 11 cuni classz
16 6 15 wceq wffx=z
17 14 16 wa wffzωx=z
18 17 10 5 wrex wffz𝒫xzωx=z
19 9 18 wi wffx=yz𝒫xzωx=z
20 19 3 5 wral wffy𝒫xx=yz𝒫xzωx=z
21 20 1 2 crab classxTop|y𝒫xx=yz𝒫xzωx=z
22 0 21 wceq wffTopLnd=xTop|y𝒫xx=yz𝒫xzωx=z