Metamath Proof Explorer


Definition df-toplnd

Description: A topology isLindelöf iff every open cover has a countable subcover. (Contributed by Stefan O'Rear, 8-Jan-2015)

Ref Expression
Assertion df-toplnd TopLnd = x Top | y 𝒫 x x = y z 𝒫 x z ω x = z

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctoplnd class TopLnd
1 vx setvar x
2 ctop class Top
3 vy setvar y
4 1 cv setvar x
5 4 cpw class 𝒫 x
6 4 cuni class x
7 3 cv setvar y
8 7 cuni class y
9 6 8 wceq wff x = y
10 vz setvar z
11 10 cv setvar z
12 cdom class
13 com class ω
14 11 13 12 wbr wff z ω
15 11 cuni class z
16 6 15 wceq wff x = z
17 14 16 wa wff z ω x = z
18 17 10 5 wrex wff z 𝒫 x z ω x = z
19 9 18 wi wff x = y z 𝒫 x z ω x = z
20 19 3 5 wral wff y 𝒫 x x = y z 𝒫 x z ω x = z
21 20 1 2 crab class x Top | y 𝒫 x x = y z 𝒫 x z ω x = z
22 0 21 wceq wff TopLnd = x Top | y 𝒫 x x = y z 𝒫 x z ω x = z