Metamath Proof Explorer


Definition df-ufl

Description: Define the class of base sets for which the ultrafilter lemma filssufil holds. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion df-ufl UFL=x|fFilxgUFilxfg

Detailed syntax breakdown

Step Hyp Ref Expression
0 cufl classUFL
1 vx setvarx
2 vf setvarf
3 cfil classFil
4 1 cv setvarx
5 4 3 cfv classFilx
6 vg setvarg
7 cufil classUFil
8 4 7 cfv classUFilx
9 2 cv setvarf
10 6 cv setvarg
11 9 10 wss wfffg
12 11 6 8 wrex wffgUFilxfg
13 12 2 5 wral wfffFilxgUFilxfg
14 13 1 cab classx|fFilxgUFilxfg
15 0 14 wceq wffUFL=x|fFilxgUFilxfg