Metamath Proof Explorer


Definition df-xrh

Description: Define an embedding from the extended real number into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Assertion df-xrh *Hom = r V x * if x ℝHom r x if x = +∞ lub r ℝHom r glb r ℝHom r

Detailed syntax breakdown

Step Hyp Ref Expression
0 cxrh class *Hom
1 vr setvar r
2 cvv class V
3 vx setvar x
4 cxr class *
5 3 cv setvar x
6 cr class
7 5 6 wcel wff x
8 crrh class ℝHom
9 1 cv setvar r
10 9 8 cfv class ℝHom r
11 5 10 cfv class ℝHom r x
12 cpnf class +∞
13 5 12 wceq wff x = +∞
14 club class lub
15 9 14 cfv class lub r
16 10 6 cima class ℝHom r
17 16 15 cfv class lub r ℝHom r
18 cglb class glb
19 9 18 cfv class glb r
20 16 19 cfv class glb r ℝHom r
21 13 17 20 cif class if x = +∞ lub r ℝHom r glb r ℝHom r
22 7 11 21 cif class if x ℝHom r x if x = +∞ lub r ℝHom r glb r ℝHom r
23 3 4 22 cmpt class x * if x ℝHom r x if x = +∞ lub r ℝHom r glb r ℝHom r
24 1 2 23 cmpt class r V x * if x ℝHom r x if x = +∞ lub r ℝHom r glb r ℝHom r
25 0 24 wceq wff *Hom = r V x * if x ℝHom r x if x = +∞ lub r ℝHom r glb r ℝHom r