| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cxrh |
|- RR*Hom |
| 1 |
|
vr |
|- r |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vx |
|- x |
| 4 |
|
cxr |
|- RR* |
| 5 |
3
|
cv |
|- x |
| 6 |
|
cr |
|- RR |
| 7 |
5 6
|
wcel |
|- x e. RR |
| 8 |
|
crrh |
|- RRHom |
| 9 |
1
|
cv |
|- r |
| 10 |
9 8
|
cfv |
|- ( RRHom ` r ) |
| 11 |
5 10
|
cfv |
|- ( ( RRHom ` r ) ` x ) |
| 12 |
|
cpnf |
|- +oo |
| 13 |
5 12
|
wceq |
|- x = +oo |
| 14 |
|
club |
|- lub |
| 15 |
9 14
|
cfv |
|- ( lub ` r ) |
| 16 |
10 6
|
cima |
|- ( ( RRHom ` r ) " RR ) |
| 17 |
16 15
|
cfv |
|- ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) |
| 18 |
|
cglb |
|- glb |
| 19 |
9 18
|
cfv |
|- ( glb ` r ) |
| 20 |
16 19
|
cfv |
|- ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) |
| 21 |
13 17 20
|
cif |
|- if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) |
| 22 |
7 11 21
|
cif |
|- if ( x e. RR , ( ( RRHom ` r ) ` x ) , if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) ) |
| 23 |
3 4 22
|
cmpt |
|- ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` r ) ` x ) , if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) ) ) |
| 24 |
1 2 23
|
cmpt |
|- ( r e. _V |-> ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` r ) ` x ) , if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) ) ) ) |
| 25 |
0 24
|
wceq |
|- RR*Hom = ( r e. _V |-> ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` r ) ` x ) , if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) ) ) ) |