Step |
Hyp |
Ref |
Expression |
0 |
|
cxrh |
⊢ ℝ*Hom |
1 |
|
vr |
⊢ 𝑟 |
2 |
|
cvv |
⊢ V |
3 |
|
vx |
⊢ 𝑥 |
4 |
|
cxr |
⊢ ℝ* |
5 |
3
|
cv |
⊢ 𝑥 |
6 |
|
cr |
⊢ ℝ |
7 |
5 6
|
wcel |
⊢ 𝑥 ∈ ℝ |
8 |
|
crrh |
⊢ ℝHom |
9 |
1
|
cv |
⊢ 𝑟 |
10 |
9 8
|
cfv |
⊢ ( ℝHom ‘ 𝑟 ) |
11 |
5 10
|
cfv |
⊢ ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) |
12 |
|
cpnf |
⊢ +∞ |
13 |
5 12
|
wceq |
⊢ 𝑥 = +∞ |
14 |
|
club |
⊢ lub |
15 |
9 14
|
cfv |
⊢ ( lub ‘ 𝑟 ) |
16 |
10 6
|
cima |
⊢ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) |
17 |
16 15
|
cfv |
⊢ ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) |
18 |
|
cglb |
⊢ glb |
19 |
9 18
|
cfv |
⊢ ( glb ‘ 𝑟 ) |
20 |
16 19
|
cfv |
⊢ ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) |
21 |
13 17 20
|
cif |
⊢ if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) |
22 |
7 11 21
|
cif |
⊢ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) ) |
23 |
3 4 22
|
cmpt |
⊢ ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) ) ) |
24 |
1 2 23
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) ) ) ) |
25 |
0 24
|
wceq |
⊢ ℝ*Hom = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) ) ) ) |