| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cxrh |
⊢ ℝ*Hom |
| 1 |
|
vr |
⊢ 𝑟 |
| 2 |
|
cvv |
⊢ V |
| 3 |
|
vx |
⊢ 𝑥 |
| 4 |
|
cxr |
⊢ ℝ* |
| 5 |
3
|
cv |
⊢ 𝑥 |
| 6 |
|
cr |
⊢ ℝ |
| 7 |
5 6
|
wcel |
⊢ 𝑥 ∈ ℝ |
| 8 |
|
crrh |
⊢ ℝHom |
| 9 |
1
|
cv |
⊢ 𝑟 |
| 10 |
9 8
|
cfv |
⊢ ( ℝHom ‘ 𝑟 ) |
| 11 |
5 10
|
cfv |
⊢ ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) |
| 12 |
|
cpnf |
⊢ +∞ |
| 13 |
5 12
|
wceq |
⊢ 𝑥 = +∞ |
| 14 |
|
club |
⊢ lub |
| 15 |
9 14
|
cfv |
⊢ ( lub ‘ 𝑟 ) |
| 16 |
10 6
|
cima |
⊢ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) |
| 17 |
16 15
|
cfv |
⊢ ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) |
| 18 |
|
cglb |
⊢ glb |
| 19 |
9 18
|
cfv |
⊢ ( glb ‘ 𝑟 ) |
| 20 |
16 19
|
cfv |
⊢ ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) |
| 21 |
13 17 20
|
cif |
⊢ if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) |
| 22 |
7 11 21
|
cif |
⊢ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) ) |
| 23 |
3 4 22
|
cmpt |
⊢ ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) ) ) |
| 24 |
1 2 23
|
cmpt |
⊢ ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) ) ) ) |
| 25 |
0 24
|
wceq |
⊢ ℝ*Hom = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) ) ) ) |