Step |
Hyp |
Ref |
Expression |
1 |
|
xrhval.b |
⊢ 𝐵 = ( ( ℝHom ‘ 𝑅 ) “ ℝ ) |
2 |
|
xrhval.l |
⊢ 𝐿 = ( glb ‘ 𝑅 ) |
3 |
|
xrhval.u |
⊢ 𝑈 = ( lub ‘ 𝑅 ) |
4 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
5 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( ℝHom ‘ 𝑟 ) = ( ℝHom ‘ 𝑅 ) ) |
6 |
5
|
fveq1d |
⊢ ( 𝑟 = 𝑅 → ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) = ( ( ℝHom ‘ 𝑅 ) ‘ 𝑥 ) ) |
7 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( lub ‘ 𝑟 ) = ( lub ‘ 𝑅 ) ) |
8 |
7 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( lub ‘ 𝑟 ) = 𝑈 ) |
9 |
5
|
imaeq1d |
⊢ ( 𝑟 = 𝑅 → ( ( ℝHom ‘ 𝑟 ) “ ℝ ) = ( ( ℝHom ‘ 𝑅 ) “ ℝ ) ) |
10 |
9 1
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( ( ℝHom ‘ 𝑟 ) “ ℝ ) = 𝐵 ) |
11 |
8 10
|
fveq12d |
⊢ ( 𝑟 = 𝑅 → ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) = ( 𝑈 ‘ 𝐵 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( glb ‘ 𝑟 ) = ( glb ‘ 𝑅 ) ) |
13 |
12 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( glb ‘ 𝑟 ) = 𝐿 ) |
14 |
13 10
|
fveq12d |
⊢ ( 𝑟 = 𝑅 → ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) = ( 𝐿 ‘ 𝐵 ) ) |
15 |
11 14
|
ifeq12d |
⊢ ( 𝑟 = 𝑅 → if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) = if ( 𝑥 = +∞ , ( 𝑈 ‘ 𝐵 ) , ( 𝐿 ‘ 𝐵 ) ) ) |
16 |
6 15
|
ifeq12d |
⊢ ( 𝑟 = 𝑅 → if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) ) = if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑅 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( 𝑈 ‘ 𝐵 ) , ( 𝐿 ‘ 𝐵 ) ) ) ) |
17 |
16
|
mpteq2dv |
⊢ ( 𝑟 = 𝑅 → ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) ) ) = ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑅 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( 𝑈 ‘ 𝐵 ) , ( 𝐿 ‘ 𝐵 ) ) ) ) ) |
18 |
|
df-xrh |
⊢ ℝ*Hom = ( 𝑟 ∈ V ↦ ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑟 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( ( lub ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) , ( ( glb ‘ 𝑟 ) ‘ ( ( ℝHom ‘ 𝑟 ) “ ℝ ) ) ) ) ) ) |
19 |
|
xrex |
⊢ ℝ* ∈ V |
20 |
19
|
mptex |
⊢ ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑅 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( 𝑈 ‘ 𝐵 ) , ( 𝐿 ‘ 𝐵 ) ) ) ) ∈ V |
21 |
17 18 20
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( ℝ*Hom ‘ 𝑅 ) = ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑅 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( 𝑈 ‘ 𝐵 ) , ( 𝐿 ‘ 𝐵 ) ) ) ) ) |
22 |
4 21
|
syl |
⊢ ( 𝑅 ∈ 𝑉 → ( ℝ*Hom ‘ 𝑅 ) = ( 𝑥 ∈ ℝ* ↦ if ( 𝑥 ∈ ℝ , ( ( ℝHom ‘ 𝑅 ) ‘ 𝑥 ) , if ( 𝑥 = +∞ , ( 𝑈 ‘ 𝐵 ) , ( 𝐿 ‘ 𝐵 ) ) ) ) ) |