Step |
Hyp |
Ref |
Expression |
1 |
|
xrhval.b |
|- B = ( ( RRHom ` R ) " RR ) |
2 |
|
xrhval.l |
|- L = ( glb ` R ) |
3 |
|
xrhval.u |
|- U = ( lub ` R ) |
4 |
|
elex |
|- ( R e. V -> R e. _V ) |
5 |
|
fveq2 |
|- ( r = R -> ( RRHom ` r ) = ( RRHom ` R ) ) |
6 |
5
|
fveq1d |
|- ( r = R -> ( ( RRHom ` r ) ` x ) = ( ( RRHom ` R ) ` x ) ) |
7 |
|
fveq2 |
|- ( r = R -> ( lub ` r ) = ( lub ` R ) ) |
8 |
7 3
|
eqtr4di |
|- ( r = R -> ( lub ` r ) = U ) |
9 |
5
|
imaeq1d |
|- ( r = R -> ( ( RRHom ` r ) " RR ) = ( ( RRHom ` R ) " RR ) ) |
10 |
9 1
|
eqtr4di |
|- ( r = R -> ( ( RRHom ` r ) " RR ) = B ) |
11 |
8 10
|
fveq12d |
|- ( r = R -> ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) = ( U ` B ) ) |
12 |
|
fveq2 |
|- ( r = R -> ( glb ` r ) = ( glb ` R ) ) |
13 |
12 2
|
eqtr4di |
|- ( r = R -> ( glb ` r ) = L ) |
14 |
13 10
|
fveq12d |
|- ( r = R -> ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) = ( L ` B ) ) |
15 |
11 14
|
ifeq12d |
|- ( r = R -> if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) = if ( x = +oo , ( U ` B ) , ( L ` B ) ) ) |
16 |
6 15
|
ifeq12d |
|- ( r = R -> if ( x e. RR , ( ( RRHom ` r ) ` x ) , if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) ) = if ( x e. RR , ( ( RRHom ` R ) ` x ) , if ( x = +oo , ( U ` B ) , ( L ` B ) ) ) ) |
17 |
16
|
mpteq2dv |
|- ( r = R -> ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` r ) ` x ) , if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) ) ) = ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` R ) ` x ) , if ( x = +oo , ( U ` B ) , ( L ` B ) ) ) ) ) |
18 |
|
df-xrh |
|- RR*Hom = ( r e. _V |-> ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` r ) ` x ) , if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) ) ) ) |
19 |
|
xrex |
|- RR* e. _V |
20 |
19
|
mptex |
|- ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` R ) ` x ) , if ( x = +oo , ( U ` B ) , ( L ` B ) ) ) ) e. _V |
21 |
17 18 20
|
fvmpt |
|- ( R e. _V -> ( RR*Hom ` R ) = ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` R ) ` x ) , if ( x = +oo , ( U ` B ) , ( L ` B ) ) ) ) ) |
22 |
4 21
|
syl |
|- ( R e. V -> ( RR*Hom ` R ) = ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` R ) ` x ) , if ( x = +oo , ( U ` B ) , ( L ` B ) ) ) ) ) |