| Step |
Hyp |
Ref |
Expression |
| 1 |
|
xrhval.b |
|- B = ( ( RRHom ` R ) " RR ) |
| 2 |
|
xrhval.l |
|- L = ( glb ` R ) |
| 3 |
|
xrhval.u |
|- U = ( lub ` R ) |
| 4 |
|
elex |
|- ( R e. V -> R e. _V ) |
| 5 |
|
fveq2 |
|- ( r = R -> ( RRHom ` r ) = ( RRHom ` R ) ) |
| 6 |
5
|
fveq1d |
|- ( r = R -> ( ( RRHom ` r ) ` x ) = ( ( RRHom ` R ) ` x ) ) |
| 7 |
|
fveq2 |
|- ( r = R -> ( lub ` r ) = ( lub ` R ) ) |
| 8 |
7 3
|
eqtr4di |
|- ( r = R -> ( lub ` r ) = U ) |
| 9 |
5
|
imaeq1d |
|- ( r = R -> ( ( RRHom ` r ) " RR ) = ( ( RRHom ` R ) " RR ) ) |
| 10 |
9 1
|
eqtr4di |
|- ( r = R -> ( ( RRHom ` r ) " RR ) = B ) |
| 11 |
8 10
|
fveq12d |
|- ( r = R -> ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) = ( U ` B ) ) |
| 12 |
|
fveq2 |
|- ( r = R -> ( glb ` r ) = ( glb ` R ) ) |
| 13 |
12 2
|
eqtr4di |
|- ( r = R -> ( glb ` r ) = L ) |
| 14 |
13 10
|
fveq12d |
|- ( r = R -> ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) = ( L ` B ) ) |
| 15 |
11 14
|
ifeq12d |
|- ( r = R -> if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) = if ( x = +oo , ( U ` B ) , ( L ` B ) ) ) |
| 16 |
6 15
|
ifeq12d |
|- ( r = R -> if ( x e. RR , ( ( RRHom ` r ) ` x ) , if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) ) = if ( x e. RR , ( ( RRHom ` R ) ` x ) , if ( x = +oo , ( U ` B ) , ( L ` B ) ) ) ) |
| 17 |
16
|
mpteq2dv |
|- ( r = R -> ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` r ) ` x ) , if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) ) ) = ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` R ) ` x ) , if ( x = +oo , ( U ` B ) , ( L ` B ) ) ) ) ) |
| 18 |
|
df-xrh |
|- RR*Hom = ( r e. _V |-> ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` r ) ` x ) , if ( x = +oo , ( ( lub ` r ) ` ( ( RRHom ` r ) " RR ) ) , ( ( glb ` r ) ` ( ( RRHom ` r ) " RR ) ) ) ) ) ) |
| 19 |
|
xrex |
|- RR* e. _V |
| 20 |
19
|
mptex |
|- ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` R ) ` x ) , if ( x = +oo , ( U ` B ) , ( L ` B ) ) ) ) e. _V |
| 21 |
17 18 20
|
fvmpt |
|- ( R e. _V -> ( RR*Hom ` R ) = ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` R ) ` x ) , if ( x = +oo , ( U ` B ) , ( L ` B ) ) ) ) ) |
| 22 |
4 21
|
syl |
|- ( R e. V -> ( RR*Hom ` R ) = ( x e. RR* |-> if ( x e. RR , ( ( RRHom ` R ) ` x ) , if ( x = +oo , ( U ` B ) , ( L ` B ) ) ) ) ) |