Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Richard Penner
Exploring Topology via Seifert and Threlfall
Generic Pseudoclosure Spaces, Pseudointerior Spaces, and Pseudoneighborhoods
df3o3
Next ⟩
brfvimex
Metamath Proof Explorer
Ascii
Unicode
Theorem
df3o3
Description:
Ordinal 3, fully expanded.
(Contributed by
RP
, 8-Jul-2021)
Ref
Expression
Assertion
df3o3
⊢
3
𝑜
=
∅
∅
∅
∅
Proof
Step
Hyp
Ref
Expression
1
df-3o
⊢
3
𝑜
=
suc
⁡
2
𝑜
2
df2o2
⊢
2
𝑜
=
∅
∅
3
2
sneqi
⊢
2
𝑜
=
∅
∅
4
2
3
uneq12i
⊢
2
𝑜
∪
2
𝑜
=
∅
∅
∪
∅
∅
5
df-suc
⊢
suc
⁡
2
𝑜
=
2
𝑜
∪
2
𝑜
6
df-tp
⊢
∅
∅
∅
∅
=
∅
∅
∪
∅
∅
7
4
5
6
3eqtr4i
⊢
suc
⁡
2
𝑜
=
∅
∅
∅
∅
8
1
7
eqtri
⊢
3
𝑜
=
∅
∅
∅
∅