Metamath Proof Explorer


Theorem df3o3

Description: Ordinal 3, fully expanded. (Contributed by RP, 8-Jul-2021)

Ref Expression
Assertion df3o3 3𝑜=

Proof

Step Hyp Ref Expression
1 df-3o 3𝑜=suc2𝑜
2 df2o2 2𝑜=
3 2 sneqi 2𝑜=
4 2 3 uneq12i 2𝑜2𝑜=
5 df-suc suc2𝑜=2𝑜2𝑜
6 df-tp =
7 4 5 6 3eqtr4i suc2𝑜=
8 1 7 eqtri 3𝑜=