Metamath Proof Explorer


Theorem dfac0

Description: Equivalence of two versions of the Axiom of Choice. The proof uses the Axiom of Regularity. The right-hand side is our original ax-ac . (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion dfac0 CHOICExyzwzwwxvutuwwtuttyu=v

Proof

Step Hyp Ref Expression
1 dfac7 CHOICExyzxwz∃!vzuyzuvu
2 aceq0 yzxwz∃!vzuyzuvuyzwzwwxvutuwwtuttyu=v
3 2 albii xyzxwz∃!vzuyzuvuxyzwzwwxvutuwwtuttyu=v
4 1 3 bitri CHOICExyzwzwwxvutuwwtuttyu=v