Metamath Proof Explorer


Theorem dfac1

Description: Equivalence of two versions of the Axiom of Choice ax-ac . The proof uses the Axiom of Regularity. The right-hand side expresses our AC with the fewest number of different variables. (Contributed by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion dfac1 CHOICExyzwzwwxxzxzwwxzxxyz=x

Proof

Step Hyp Ref Expression
1 dfac7 CHOICExyzxwz∃!vzuyzuvu
2 aceq1 yzxwz∃!vzuyzuvuyzwzwwxxzxzwwxzxxyz=x
3 2 albii xyzxwz∃!vzuyzuvuxyzwzwwxxzxzwwxzxxyz=x
4 1 3 bitri CHOICExyzwzwwxxzxzwwxzxxyz=x