Step |
Hyp |
Ref |
Expression |
1 |
|
dfac7 |
⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ) |
2 |
|
aceq1 |
⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
3 |
2
|
albii |
⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ∀ 𝑤 ∈ 𝑧 ∃! 𝑣 ∈ 𝑧 ∃ 𝑢 ∈ 𝑦 ( 𝑧 ∈ 𝑢 ∧ 𝑣 ∈ 𝑢 ) ↔ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |
4 |
1 3
|
bitri |
⊢ ( CHOICE ↔ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ∀ 𝑤 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑧 ( ∃ 𝑥 ( ( 𝑧 ∈ 𝑤 ∧ 𝑤 ∈ 𝑥 ) ∧ ( 𝑧 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ) ↔ 𝑧 = 𝑥 ) ) ) |