Metamath Proof Explorer


Theorem dfatafv2rnb

Description: The alternate function value at a class A is defined, i.e. in the range of the function, iff the function is defined at A . (Contributed by AV, 2-Sep-2022)

Ref Expression
Assertion dfatafv2rnb FdefAtAF''''AranF

Proof

Step Hyp Ref Expression
1 funressndmafv2rn FdefAtAF''''AranF
2 ndfatafv2nrn ¬FdefAtAF''''AranF
3 df-nel F''''AranF¬F''''AranF
4 2 3 sylib ¬FdefAtA¬F''''AranF
5 4 con4i F''''AranFFdefAtA
6 1 5 impbii FdefAtAF''''AranF