Metamath Proof Explorer


Theorem dfeldisj4

Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021)

Ref Expression
Assertion dfeldisj4 ElDisj A x * u A x u

Proof

Step Hyp Ref Expression
1 df-eldisj ElDisj A Disj E -1 A
2 relres Rel E -1 A
3 dfdisjALTV4 Disj E -1 A x * u u E -1 A x Rel E -1 A
4 2 3 mpbiran2 Disj E -1 A x * u u E -1 A x
5 brcnvepres u V x V u E -1 A x u A x u
6 5 el2v u E -1 A x u A x u
7 6 mobii * u u E -1 A x * u u A x u
8 df-rmo * u A x u * u u A x u
9 7 8 bitr4i * u u E -1 A x * u A x u
10 9 albii x * u u E -1 A x x * u A x u
11 1 4 10 3bitri ElDisj A x * u A x u