Metamath Proof Explorer


Theorem dfeumo

Description: An elementary proof showing the reverse direction of dfmoeu . Here the characterizing expression of existential uniqueness ( eu6 ) is derived from that of uniqueness ( df-mo ). (Contributed by Wolf Lammen, 3-Oct-2023)

Ref Expression
Assertion dfeumo xφyxφx=yyxφx=y

Proof

Step Hyp Ref Expression
1 ax6ev xx=y
2 biimpr φx=yx=yφ
3 2 aleximi xφx=yxx=yxφ
4 1 3 mpi xφx=yxφ
5 4 exlimiv yxφx=yxφ
6 5 pm4.71ri yxφx=yxφyxφx=y
7 abai xφyxφx=yxφxφyxφx=y
8 dfmoeu xφyxφx=yyxφx=y
9 8 anbi2i xφxφyxφx=yxφyxφx=y
10 6 7 9 3bitrri xφyxφx=yyxφx=y