Metamath Proof Explorer


Theorem dff14i

Description: A one-to-one function maps different arguments onto different values. Implication of the alternate definition dff14a . (Contributed by AV, 30-Oct-2025)

Ref Expression
Assertion dff14i F : A 1-1 B X A Y A X Y F X F Y

Proof

Step Hyp Ref Expression
1 f1veqaeq F : A 1-1 B X A Y A F X = F Y X = Y
2 1 necon3d F : A 1-1 B X A Y A X Y F X F Y
3 2 exp32 F : A 1-1 B X A Y A X Y F X F Y
4 3 3imp2 F : A 1-1 B X A Y A X Y F X F Y