Metamath Proof Explorer


Theorem dffn4

Description: A function maps onto its range. (Contributed by NM, 10-May-1998)

Ref Expression
Assertion dffn4 FFnAF:AontoranF

Proof

Step Hyp Ref Expression
1 eqid ranF=ranF
2 1 biantru FFnAFFnAranF=ranF
3 df-fo F:AontoranFFFnAranF=ranF
4 2 3 bitr4i FFnAF:AontoranF