Metamath Proof Explorer


Theorem dffun6

Description: Alternate definition of a function using "at most one" notation. (Contributed by NM, 9-Mar-1995) Avoid ax-10 , ax-12 . (Revised by SN, 19-Dec-2024)

Ref Expression
Assertion dffun6 FunFRelFx*yxFy

Proof

Step Hyp Ref Expression
1 dffun2 FunFRelFxyzxFyxFzy=z
2 breq2 y=zxFyxFz
3 2 mo4 *yxFyyzxFyxFzy=z
4 3 albii x*yxFyxyzxFyxFzy=z
5 4 anbi2i RelFx*yxFyRelFxyzxFyxFzy=z
6 1 5 bitr4i FunFRelFx*yxFy