Metamath Proof Explorer


Theorem dfid2

Description: Alternate definition of the identity relation. Instance of dfid3 not requiring auxiliary axioms. (Contributed by NM, 15-Mar-2007) Reduce axiom usage. (Revised by Gino Giotto, 4-Nov-2024) (Proof shortened by BJ, 5-Nov-2024)

Use df-id instead to make the semantics of the constructor df-opab clearer. (New usage is discouraged.)

Ref Expression
Assertion dfid2 I=xx|x=x

Proof

Step Hyp Ref Expression
1 df-id I=xy|x=y
2 equcomi x=yy=x
3 2 opeq2d x=yxy=xx
4 3 eqeq2d x=yz=xyz=xx
5 4 pm5.32ri z=xyx=yz=xxx=y
6 5 exbii yz=xyx=yyz=xxx=y
7 ax6evr yx=y
8 19.42v yz=xxx=yz=xxyx=y
9 7 8 mpbiran2 yz=xxx=yz=xx
10 6 9 bitri yz=xyx=yz=xx
11 eqidd z=xxx=x
12 11 pm4.71i z=xxz=xxx=x
13 10 12 bitri yz=xyx=yz=xxx=x
14 13 exbii xyz=xyx=yxz=xxx=x
15 id x=ux=u
16 15 15 opeq12d x=uxx=uu
17 16 eqeq2d x=uz=xxz=uu
18 15 15 eqeq12d x=ux=xu=u
19 17 18 anbi12d x=uz=xxx=xz=uuu=u
20 19 exexw xz=xxx=xxxz=xxx=x
21 14 20 bitri xyz=xyx=yxxz=xxx=x
22 21 abbii z|xyz=xyx=y=z|xxz=xxx=x
23 df-opab xy|x=y=z|xyz=xyx=y
24 df-opab xx|x=x=z|xxz=xxx=x
25 22 23 24 3eqtr4i xy|x=y=xx|x=x
26 1 25 eqtri I=xx|x=x