Metamath Proof Explorer


Theorem dfifp6

Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 2-Oct-2019)

Ref Expression
Assertion dfifp6 if-φψχφψ¬χφ

Proof

Step Hyp Ref Expression
1 df-ifp if-φψχφψ¬φχ
2 ancom ¬φχχ¬φ
3 annim χ¬φ¬χφ
4 2 3 bitri ¬φχ¬χφ
5 4 orbi2i φψ¬φχφψ¬χφ
6 1 5 bitri if-φψχφψ¬χφ