Metamath Proof Explorer


Theorem dfima2

Description: Alternate definition of image. Compare definition (d) of Enderton p. 44. (Contributed by NM, 19-Apr-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011) (Proof shortened by Peter Mazsa, 2-Oct-2022)

Ref Expression
Assertion dfima2 AB=y|xBxAy

Proof

Step Hyp Ref Expression
1 df-ima AB=ranAB
2 dfrn2 ranAB=y|xxABy
3 brres yVxAByxBxAy
4 3 elv xAByxBxAy
5 4 exbii xxAByxxBxAy
6 df-rex xBxAyxxBxAy
7 5 6 bitr4i xxAByxBxAy
8 7 abbii y|xxABy=y|xBxAy
9 1 2 8 3eqtri AB=y|xBxAy