Metamath Proof Explorer


Theorem dfimafn

Description: Alternate definition of the image of a function. (Contributed by Raph Levien, 20-Nov-2006)

Ref Expression
Assertion dfimafn FunFAdomFFA=y|xAFx=y

Proof

Step Hyp Ref Expression
1 dfima2 FA=y|xAxFy
2 ssel AdomFxAxdomF
3 funbrfvb FunFxdomFFx=yxFy
4 3 ex FunFxdomFFx=yxFy
5 2 4 syl9r FunFAdomFxAFx=yxFy
6 5 imp31 FunFAdomFxAFx=yxFy
7 6 rexbidva FunFAdomFxAFx=yxAxFy
8 7 abbidv FunFAdomFy|xAFx=y=y|xAxFy
9 1 8 eqtr4id FunFAdomFFA=y|xAFx=y