Metamath Proof Explorer


Theorem dfiop2

Description: Alternate definition of Hilbert space identity operator. (Contributed by NM, 7-Aug-2006) (New usage is discouraged.)

Ref Expression
Assertion dfiop2 Iop=I

Proof

Step Hyp Ref Expression
1 df-iop Iop=proj
2 helch C
3 2 pjfni projFn
4 fnresi IFn
5 pjch1 xprojx=x
6 fvresi xIx=x
7 5 6 eqtr4d xprojx=Ix
8 7 rgen xprojx=Ix
9 eqfnfv projFnIFnproj=Ixprojx=Ix
10 8 9 mpbiri projFnIFnproj=I
11 3 4 10 mp2an proj=I
12 1 11 eqtri Iop=I