Metamath Proof Explorer


Theorem dfoi

Description: Rewrite df-oi with abbreviations. (Contributed by Mario Carneiro, 24-Jun-2015)

Ref Expression
Hypotheses dfoi.1 C=wA|jranhjRw
dfoi.2 G=hVιvC|uC¬uRv
dfoi.3 F=recsG
Assertion dfoi OrdIsoRA=ifRWeARSeAFxOn|tAzFxzRt

Proof

Step Hyp Ref Expression
1 dfoi.1 C=wA|jranhjRw
2 dfoi.2 G=hVιvC|uC¬uRv
3 dfoi.3 F=recsG
4 df-oi OrdIsoRA=ifRWeARSeArecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxOn|tAzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRt
5 1 a1i hVC=wA|jranhjRw
6 5 raleqdv hVuC¬uRvuwA|jranhjRw¬uRv
7 5 6 riotaeqbidv hVιvC|uC¬uRv=ιvwA|jranhjRw|uwA|jranhjRw¬uRv
8 7 mpteq2ia hVιvC|uC¬uRv=hVιvwA|jranhjRw|uwA|jranhjRw¬uRv
9 2 8 eqtri G=hVιvwA|jranhjRw|uwA|jranhjRw¬uRv
10 recseq G=hVιvwA|jranhjRw|uwA|jranhjRw¬uRvrecsG=recshVιvwA|jranhjRw|uwA|jranhjRw¬uRv
11 9 10 ax-mp recsG=recshVιvwA|jranhjRw|uwA|jranhjRw¬uRv
12 3 11 eqtri F=recshVιvwA|jranhjRw|uwA|jranhjRw¬uRv
13 12 imaeq1i Fx=recshVιvwA|jranhjRw|uwA|jranhjRw¬uRvx
14 13 raleqi zFxzRtzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRt
15 14 rexbii tAzFxzRttAzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRt
16 15 rabbii xOn|tAzFxzRt=xOn|tAzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRt
17 12 16 reseq12i FxOn|tAzFxzRt=recshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxOn|tAzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRt
18 ifeq1 FxOn|tAzFxzRt=recshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxOn|tAzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRtifRWeARSeAFxOn|tAzFxzRt=ifRWeARSeArecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxOn|tAzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRt
19 17 18 ax-mp ifRWeARSeAFxOn|tAzFxzRt=ifRWeARSeArecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxOn|tAzrecshVιvwA|jranhjRw|uwA|jranhjRw¬uRvxzRt
20 4 19 eqtr4i OrdIsoRA=ifRWeARSeAFxOn|tAzFxzRt