Metamath Proof Explorer


Theorem dfopg

Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015) (Avoid depending on this detail.)

Ref Expression
Assertion dfopg AVBWAB=AAB

Proof

Step Hyp Ref Expression
1 elex AVAV
2 elex BWBV
3 dfopif AB=ifAVBVAAB
4 iftrue AVBVifAVBVAAB=AAB
5 3 4 eqtrid AVBVAB=AAB
6 1 2 5 syl2an AVBWAB=AAB