Metamath Proof Explorer


Theorem dfpred2

Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 8-Feb-2011)

Ref Expression
Hypothesis dfpred2.1 XV
Assertion dfpred2 PredRAX=Ay|yRX

Proof

Step Hyp Ref Expression
1 dfpred2.1 XV
2 df-pred PredRAX=AR-1X
3 iniseg XVR-1X=y|yRX
4 1 3 ax-mp R-1X=y|yRX
5 4 ineq2i AR-1X=Ay|yRX
6 2 5 eqtri PredRAX=Ay|yRX