Metamath Proof Explorer


Theorem dfpred3

Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Hypothesis dfpred2.1 XV
Assertion dfpred3 PredRAX=yA|yRX

Proof

Step Hyp Ref Expression
1 dfpred2.1 XV
2 incom Ay|yRX=y|yRXA
3 1 dfpred2 PredRAX=Ay|yRX
4 dfrab2 yA|yRX=y|yRXA
5 2 3 4 3eqtr4i PredRAX=yA|yRX