Metamath Proof Explorer


Theorem dfpred3g

Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Assertion dfpred3g XVPredRAX=yA|yRX

Proof

Step Hyp Ref Expression
1 predeq3 x=XPredRAx=PredRAX
2 breq2 x=XyRxyRX
3 2 rabbidv x=XyA|yRx=yA|yRX
4 1 3 eqeq12d x=XPredRAx=yA|yRxPredRAX=yA|yRX
5 vex xV
6 5 dfpred3 PredRAx=yA|yRx
7 4 6 vtoclg XVPredRAX=yA|yRX