Metamath Proof Explorer


Theorem dfrcl4

Description: Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020)

Ref Expression
Assertion dfrcl4 r*=rVn01rrn

Proof

Step Hyp Ref Expression
1 dfrcl3 r*=rVrr0rr1
2 df-pr 01=01
3 iuneq1 01=01n01rrn=n01rrn
4 2 3 ax-mp n01rrn=n01rrn
5 iunxun n01rrn=n0rrnn1rrn
6 c0ex 0V
7 oveq2 n=0rrn=rr0
8 6 7 iunxsn n0rrn=rr0
9 1ex 1V
10 oveq2 n=1rrn=rr1
11 9 10 iunxsn n1rrn=rr1
12 8 11 uneq12i n0rrnn1rrn=rr0rr1
13 4 5 12 3eqtri n01rrn=rr0rr1
14 13 mpteq2i rVn01rrn=rVrr0rr1
15 1 14 eqtr4i r*=rVn01rrn