Metamath Proof Explorer


Theorem dfrefrels3

Description: Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019)

Ref Expression
Assertion dfrefrels3 RefRels = r Rels | x dom r y ran r x = y x r y

Proof

Step Hyp Ref Expression
1 dfrefrels2 RefRels = r Rels | I dom r × ran r r
2 idinxpss I dom r × ran r r x dom r y ran r x = y x r y
3 1 2 rabbieq RefRels = r Rels | x dom r y ran r x = y x r y