Database ZF (ZERMELO-FRAENKEL) SET THEORY ZF Set Theory - start with the Axiom of Extensionality Subclasses and subsets dfss3f  
				
		 
		
			
		 
		Description:   Equivalence for subclass relation, using bound-variable hypotheses
       instead of distinct variable conditions.  (Contributed by NM , 20-Mar-2004) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						dfssf.1   ⊢    Ⅎ   _  x  A       
					 
					
						dfssf.2   ⊢    Ⅎ   _  x  B       
					 
				
					Assertion 
					dfss3f    ⊢   A  ⊆  B    ↔   ∀  x  ∈  A   x  ∈  B           
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							dfssf.1  ⊢    Ⅎ   _  x  A       
						
							2 
								
							 
							dfssf.2  ⊢    Ⅎ   _  x  B       
						
							3 
								1  2 
							 
							dfssf   ⊢   A  ⊆  B    ↔   ∀  x    x  ∈  A    →   x  ∈  B            
						
							4 
								
							 
							df-ral   ⊢   ∀  x  ∈  A   x  ∈  B      ↔   ∀  x    x  ∈  A    →   x  ∈  B            
						
							5 
								3  4 
							 
							bitr4i   ⊢   A  ⊆  B    ↔   ∀  x  ∈  A   x  ∈  B