Metamath Proof Explorer


Theorem dfss3f

Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004)

Ref Expression
Hypotheses dfss2f.1 _xA
dfss2f.2 _xB
Assertion dfss3f ABxAxB

Proof

Step Hyp Ref Expression
1 dfss2f.1 _xA
2 dfss2f.2 _xB
3 1 2 dfss2f ABxxAxB
4 df-ral xAxBxxAxB
5 3 4 bitr4i ABxAxB