Metamath Proof Explorer


Theorem dfss6

Description: Alternate definition of subclass relationship. (Contributed by RP, 16-Apr-2020)

Ref Expression
Assertion dfss6 A B ¬ x x A ¬ x B

Proof

Step Hyp Ref Expression
1 dfss2 A B x x A x B
2 notnotb x x A x B ¬ ¬ x x A x B
3 1 2 bitri A B ¬ ¬ x x A x B
4 exanali x x A ¬ x B ¬ x x A x B
5 3 4 xchbinxr A B ¬ x x A ¬ x B